Math, asked by prathimagujja, 6 months ago

if P(1,-2) is a point on
the line
segment A( x,y) and B (-2,4) such as
that AP:PB= 2:3 find the coordinates
of A​

Answers

Answered by Arceus02
3

We're given,

\longrightarrow \sf{A(x, y) = ({x}_{1}, {y}_{1})}

\longrightarrow \sf{P(1, -2) = (\alpha, \beta)}

\longrightarrow \sf{B(-2, 4) = ({x}_{2}, {y}_{2})}

\longrightarrow \sf{AP:PB = m:n = 2:3}

\sf{\\ \\}

We know by section formula, when a point \sf{P(\alpha, \beta)} intersects internally a line segment AB where \sf{A({x}_{1},{y}_{1})} and \sf{B({x}_{2},{y}_{2})} in the ratio m : n, then:-

\quad \quad \longrightarrow \sf{\alpha = \dfrac{m{x}_{2} + n{x}_{1}}{m + n}}

\quad \quad \longrightarrow \sf{\beta = \dfrac{m{y}_{2} + n{y}_{1}}{m + n}}

\sf{\\ \\}

So, putting the values,

For alpha,

\longrightarrow \sf{\alpha = \dfrac{m{x}_{2} + n{x}_{1}}{m + n}}

\longrightarrow \sf{1 = \dfrac{(2 * -2) + (3 * x)}{2 + 3}}

\longrightarrow \sf{1 = \dfrac{ - 4 + 3x}{5}}

\longrightarrow \sf{5 = - 4 + 3x}

\longrightarrow \sf{9 = 3x}

\longrightarrow \underline{\sf{x = 3}}

\sf{\\ \\}

For beta,

\longrightarrow \sf{\beta = \dfrac{m{y}_{2} + n{y}_{1}}{m + n}}

\longrightarrow \sf{-2 = \dfrac{(2 * 4) + (3 * y)}{2 + 3}}

\longrightarrow \sf{-2 = \dfrac{ 8 + 3y}{5}}

\longrightarrow \sf{-10 = 8 + 3y}

\longrightarrow \sf{-18 = 3y}

\longrightarrow \underline{\sf{y = -6}}

\sf{\\ \\}

Hence the answer is,

\longrightarrow{\underline{\underline{\sf{A = (3,-6)}}}}

Similar questions