Math, asked by sumanvasudev123, 7 months ago

If p(1,-2) is the midpoint of the line segment joining the points A( 1,k-3) and B(1, k), then the value of k is ……………………….​

Answers

Answered by abhi569
19

Answer:

- 1/2

Step-by-step explanation:

Using mid point formula,

mid point of (a,b) and (c,d) is (a+c/2 , b+d/2).

 So, here,  mid point of AB is,

⇒ (1+1/2  , k-3+k/2 )

⇒ (1 , 2k-3/2)

    In question it is given that the mid point is (1 , - 2).

⇒ (1 , 2k - 3/2)  = (1 , - 2)

          ⇒ 2k-3/2  = - 2

          ⇒ 2k - 3 = - 4

          ⇒ 2k = -4 + 3

          ⇒ k = -1/2

Answered by Qᴜɪɴɴ
26

Given:

  • p (1, -2) is mid point of line segment joining A( 1, k-3) and B(1,k)

━━━━━━━━━━━━━━━━

Need to Find :

  • value of k=?

━━━━━━━━━━━━━━━━

Solution:

We know for a point to be midpoint,

(x,y) = ( \dfrac{x1 + x2}{2},  \dfrac{y1 + y2}{2} )

 \implies \:( 1 ,- 2 )=  \dfrac{1 + 1}{2} , \dfrac{k - 3 + k}{2}

━━━━━━━━━━━━━━━━

Solving separately,

 - 2 =  \dfrac{2k - 3}{2}

 \implies \:  - 4 = 2k - 3

 \implies \: 2k =  - 1

\red{\large{\bold{ \implies \: k =  \dfrac{ - 1}{2}}}}

Similar questions