Math, asked by Jithu920005, 1 month ago

. If p(1/2 , x/2) is the midpoint of the line segment joiningthe points A(3, 7) and B(- 2, 4) then the value of x is​

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

Given: P(1/2, x/2) is the midpoint of the line segment joining the points A(3, 7) and B(-2, 4).

→ To solve this, let us calculate the coordinates of midpoint of line segment AB.

The coordinates of midpoint of AB will be:

 \rm =  \bigg( \dfrac{3 - 2}{2} , \dfrac{7 + 4}{2}  \bigg)

 \rm =  \bigg( \dfrac{1}{2} , \dfrac{11}{2}  \bigg)

Also, P is the midpoint of AB. Therefore:

 \rm: \longmapsto  P=  \bigg( \dfrac{1}{2} , \dfrac{11}{2}  \bigg)

 \rm: \longmapsto  \bigg( \dfrac{1}{2} , \dfrac{x}{2}  \bigg)=  \bigg( \dfrac{1}{2} , \dfrac{11}{2}  \bigg)

Comparing both sides, we get:

 \rm: \longmapsto \dfrac{x}{2}  =  \dfrac{11}{2}

 \rm: \longmapsto x = 11

So, the value of x is 11.

\textsf{\large{\underline{Learn More}:}}

1. Section formula.

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the point which divides PQ internally in the ratio m₁ : m₂. Then, the coordinates of R will be:

\rm:\longmapsto R = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg)

2. Mid-point formula.

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the mid-point of PQ. Then, the coordinates of R will be:

\rm:\longmapsto R = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)

3. Centroid of a triangle.

Centroid of a triangle is the point where the medians of the triangle meet.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle. Let R(x, y) be the centroid of the triangle. Then, the coordinates of R will be:

\rm:\longmapsto R = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg)

Attachments:
Answered by shettysachi5
1

Answer:

Given P is the mid point of AB,where A(−6,5) and B(−2,3)

∴  2a​=2−6+(−2)​

∴a=−8

Step-by-step explanation:

PLS MARK ME AS A BRAINLIST

Similar questions