Math, asked by nandini9418, 1 year ago

if p+1/p=2prove that p²+1/p²=p⁴+1/p⁴


raj08944: hi Nandini

Answers

Answered by sijasubbiah
11

Hey


Here is your answer,


______________________________________________________

p+1 / p = 2

Cross multiplying

p+1 = 2p

2p-p = 1

p = 1


To prove : p²+1/p²=p⁴+1/p⁴

Substitute the value of p in the equation,

(1)² + 1 / (1)² = (1)⁴ + 1 / (1)⁴

1 + 1/ 1 = 1 + 1/1

2/1 = 2/1

2 = 2

LHS = RHS

Hence proved.


Hope it helps you!


raj08944: what?????
Answered by abhi569
12

 \mathsf{p +  \dfrac{1}{p}  = 2}


\mathsf{\texttt{ Square on both sides}}


 \mathsf{  \implies \: \bigg(p +  \dfrac{1}{p} \bigg) {}^{2} = 2 {}^{2}  }

\mathsf{We\: know, ( a + b )^{2}= a^{2} + b^{2} + 2ab}

 \therefore  \mathsf{ {p}^{2}  +  \dfrac{1}{ {p}^{2} }  +  \bigg( 2 \times p \times  \dfrac{1}{p } \bigg) } = 4 \\  \\  \\  \mathsf{ \implies \:  {p}^{2}  +  \dfrac{1}{p {}^{2} }   + 2(1) = 4} \\  \\  \\  \mathsf{ \implies \:  {p}^{2}   + \dfrac{1}{p {}^{2} }  = 4 - 2} \\  \\  \\  \mathsf{ \implies  p {}^{2}  +  \dfrac{1}{p {}^{2} }  = 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \textit{...(i)}}


\mathsf{\texttt{ Square on both sides}}


 \mathsf{ \implies \bigg(p {}^{2}  +  \dfrac{1}{p {}^{2} }  \bigg) {}^{2}  = 2 {}^{2} }


\mathsf{We\: know, ( a + b )^{2}= a^{2} + b^{2} + 2ab}


 \therefore  \mathsf{ {p}^{4}  +  \dfrac{1}{ {p}^{4} }  +  \bigg( 2 \times p {}^{4}  \times  \dfrac{1}{p {}^{4} } \bigg) } = 4 \\  \\  \\  \mathsf{ \implies \:  {p}^{4}  +  \dfrac{1}{p {}^{4} }   + 2(1) = 4} \\  \\  \\  \mathsf{ \implies \:  {p}^{4}   + \dfrac{1}{p {}^{4} }  = 4 - 2} \\  \\  \\  \mathsf{ \implies  p {}^{4}  +  \dfrac{1}{p {}^{4} }  = 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \textit{...(ii)}}



 \mathsf{From \bold{\textit{( i ) and ( ii )}, }2 = 2 }


 \therefore \mathsf{ p {}^{2}  +  \dfrac{1}{ {p}^{2} }  =  {p}^{4}  +  \dfrac{1}{p {}^{4} }}


Hence, proved.

abhi569: comment section is not for personal messages
raj08944: hi gudiya
Similar questions