Math, asked by AKHILESH2409, 3 months ago

if p+1/p = 3 , find the value of p-1/p​

Answers

Answered by Anonymous
9

Given that,

 \sf \: p +  \dfrac{1}{p}  = 3

Squaring on both sides,

 \implies \sf \: (p +  \dfrac{1}{p}) {}^{2}   = 3 {}^{2}  \\  \\  \implies \sf \:  {p}^{2}  +  \dfrac{1}{ {p}^{2} }  +  2 = 9 \\  \\   \implies \sf \:  {p}^{2}  +  \dfrac{1}{ {p}^{2} }   = 7

Now,

 \sf \:( p  -   \dfrac{1}{p}  ) {}^{2} =  {p}^{2}  +  \dfrac{1}{ {p}^{2} }  - 2 \\  \\  \longrightarrow \sf \: \:( p  -   \dfrac{1}{p}  ) {}^{2} =   5 \\  \\   \longrightarrow \boxed{ \boxed{ \sf \: \: p  -   \dfrac{1}{p}   = \sqrt{5}}}


Anonymous: Pls check ur ans.
Answered by Anonymous
37

Question :-

If p + 1/p = 3 , find the value of p - 1/p.

Given :-

p + 1/p = 3

To find :-

p - 1/p.

Solution :-

p + 1/p = 3

Squaring both side,

➺ ( p + 1/p )² = (3)²

➺ p² + 1/p² + 2 = 9

➺ p² + 1/p² = 9 - 2

➺ p² + 1/p² = 7

Now,

( p - 1/p )² = p² + 1/p² - 2

➺ ( p - 1/p )² = 7 - 2

➺ ( p - 1/p )² = 5

\large\boxed{\implies\green{p - 1/p = √5}}

Formula used :-

( a + 1/a )² = a² + 1/a² + 2

( a - 1/a )² = a² + 1/a² - 2

Additional Information :-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • a³ + b³ = (a + b)(a² + b² - ab)
  • a³ - b³ = (a - b)(a² + b² + ab)
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Similar questions