Math, asked by bikash127, 11 months ago

If p+1/p =√3 ,prove that p^3+1/p^3=0​

Answers

Answered by abdul9838
8

\small \bf \pink{hey \: mate \: here \: is \: ur \: an s\: } \\  \\ \small \bf \pink{ \huge \: solution} \\  \\ \small \bf \pink{p +  \frac{1}{p}  =  \sqrt{3} } \\  \\ \small \bf \pink{now} \\  \\ \small \bf \pink{ {p}^{3}  +  \frac{1}{ {p}^{3} } = 0 } \\  \\ \small \bf \pink{we \: know \: that} \\  \\ \small \bf \pink{ p +  \frac{1}{p}  =  \sqrt{3} } \\  \\ \small \bf \pink{cubing \: on \: both \: sides} \\  \\ \small \bf \pink{again \: we \: know \: that} \\  \\ \small \bf \pink{(a + b)^{3}  =  {a}^{3}  +  {b}^{3} + 3ab(a + b) } \\  \\ \small \bf \pink{ {p}^{3}  +  \frac{1}{ {p}^{3}  } + 3 \times p \times  \frac{1}{p}(p +  \frac{1}{p}  ) =  \sqrt{3}^{3} } \\  \\  \\ \small \bf \pink{ {p}^{3} +  \frac{1}{p^{3}} + 3 \times 1( \sqrt{3}  ) = 3 \sqrt{3}  } \\  \\ \small \bf \pink{ {p}^{3}  +  \frac{1}{ {p}^{3} } + 3 \sqrt{3}   = 3 \sqrt{3} } \\  \\ \small \bf \pink{ {p}^{3} +  \frac{1}{ {p}^{3} }  = 3 \sqrt{3} - 3 \sqrt{3}   } \\  \\ \small \bf \pink{ {p}^{3} +  \frac{1}{ {p}^{3} }  = 0 \:  \:  \: proved }

Similar questions