Math, asked by harshinii04, 6 months ago

If p+1/p=6 find 3p cube +3/p cube

Answers

Answered by absahu01
1

Given : p + 1/p = 6

To find : 3p^3 + 3/p^3

3 (p^3 + 1/p^3)

( {x}^{3} + {y}^{3} )=(x+y)( {x}^{2} + {y}^{2} −xy)

3 (p + 1/p) (p^2 + 1/p^2 - p×1/p)

3 × 6 × (p^2 + 1/p^2 - 1)

 ({x + y})^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

so, x^2 + y^2 = (x + y)^2 - 2xy

18 × [ (p + 1/p)^2 - 2p×1/p -1 ]

18 × [ 6^2 - 2 - 1 ]

18 × [ 36 - 3 ]

18 × 33

= 594

Similar questions