Math, asked by nilamprasad60, 1 month ago

If p-1/P = m , show that p²+1/P² = m²+2
Give me the answer​

Answers

Answered by anindyaadhikari13
8

\textsf{\large{\underline{Solution}:}}

Given Data:

 \rm: \longmapsto p -  \dfrac{1}{p} = m

On squaring both sides, we get:

 \rm: \longmapsto  \bigg(p -  \dfrac{1}{p} \bigg)^{2}  =  {m}^{2}

Using identity (a - b)² = a² - 2ab + b², we get:

 \rm: \longmapsto  {p}^{2} - 2 \cdot p \cdot \dfrac{1}{p} +   \bigg(\dfrac{1}{p} \bigg)^{2} =  {m}^{2}

 \rm: \longmapsto  {p}^{2} - 2 + \dfrac{1}{ {p}^{2} }  =  {m}^{2}

Adding 2 to both sides, we get:

 \rm: \longmapsto  {p}^{2}+ \dfrac{1}{ {p}^{2} }  =  {m}^{2}  + 2

Hence Proved..!!

\textsf{\large{\underline{Learn More}:}}

  1. (a + b)² = a² + 2ab + b²
  2. (a - b)² = a² - 2ab + b²
  3. a² - b² = (a + b)(a - b)
  4. (a + b)³ = a³ + 3ab(a + b) + b³
  5. (a - b)³ = a³ - 3ab(a - b) - b³
  6. a³ + b³ = (a + b)(a² - ab + b²)
  7. a³ - b³ = (a - b)(a² + ab + b²)

anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions