Math, asked by khaitanyogansh08, 21 days ago

if (p^2 + 1/p^2) =27find the value of (p-1/p)^3​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {p}^{2} + \dfrac{1}{ {p}^{2} } = 27 \\

can be rewritten as on Subtracting 2 on both sides,

\rm \:  {p}^{2} + \dfrac{1}{ {p}^{2} } - 2 = 27  - 2\\

\rm \:  {p}^{2} + \dfrac{1}{ {p}^{2} } - 2 \times p \times  \dfrac{1}{p}  = 25\\

We know,

\boxed{\rm{  \: {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2} \: }} \\

So, using this result, we get

\rm \:  {\bigg(p - \dfrac{1}{p} \bigg) }^{2}  = 25 \\

\rm \:  {\bigg(p - \dfrac{1}{p} \bigg) }^{2}  =  {5}^{2}  \\

\rm\implies \:p - \dfrac{1}{ {p}} =  \:  \pm \: 5

So, 2 cases arises.

Case :- 1

\rm \:p - \dfrac{1}{ {p}} =  \:  5 \\

On cubing both sides, we get

\rm \:  {\bigg(p -  \dfrac{1}{p}  \bigg) }^{3} =  {5}^{3}  \\

\rm\implies \:\boxed{\rm{  \:\rm \:  {\bigg(p -  \dfrac{1}{p}  \bigg) }^{3} =   \: 125 \:  \: }}  \\

Case :- 2

\rm \:p - \dfrac{1}{ {p}} =  \:  -  \:  5 \\

On cubing both sides, we get

\rm \:  {\bigg(p -  \dfrac{1}{p}  \bigg) }^{3} =  {( - 5)}^{3}  \\

\rm\implies \:\boxed{\rm{  \:\rm \:  {\bigg(p -  \dfrac{1}{p}  \bigg) }^{3} =  -  \: 125 \:  \: }}  \\

Hence,

 \red{\rm\implies \:\boxed{\rm{  \:\rm \:  {\bigg(p -  \dfrac{1}{p}  \bigg) }^{3} =   \:  \pm \: 125 \:  \: }} } \\

\rule{190pt}{2pt}

Additional Information :-

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Answered by BrainlyZendhya
3

We have been given two equations. And they are,

  • \sf{p^2\:+\:{\dfrac{1}{p^2}}\:=\:27}\:---(1)
  • \sf({p\:-\:{\dfrac{1}{p}})^3}\:---(2)

We have square in the LHS of the given equation, and we can solve this by making both commonly a square number. And so, Let's subtract 2 from both the LHS and RHS, so that we can obtain a square number.

Subtracting 2 from LHS & RHS of (1), we get,

\sf\implies{p^2\:+\:{\dfrac{1}{p^2}}\:-\:2\:=\:27\:-\:2}

\sf\implies{p^2\:+\:{\dfrac{1}{p^2}}\:-\:2\:\times\:p\times\:{\dfrac{1}{p}}\:=\:27\:-\:2}

This is in the form, {\boxed{\bullet\:{a^2\:+\:b^2\:+\:2ab\:=\:(a^2\:-\:b^2)}}}

Substituting values in Formula,we get,

\sf\implies{p^2\:+\:{\dfrac{1}{p^2}}\:-\:2\:\times\:p\times\:{\dfrac{1}{p}}\:=\:27\:-\:2}

\sf\implies({p\:-\:{\dfrac{1}{p}})^2\:=\:25}

This can be written as,

\sf\implies{p\:-\:{\dfrac{1}{p}}^2\:=\:5^2}

\sf\implies{p\:-\:{\dfrac{1}{p}}^{\cancel{2}}\:=\:5^{\cancel{2}}}

\sf\implies{p\:-\:{\dfrac{1}{p}}\:=\:±5}

As we got a result ±5, We will be getting two solutions. When we use +5, we will get a solution and when we use -5, we will be getting another solution.

Substituting 5 in (2), we get,

\sf\implies({p\:-\:{\dfrac{1}{p}})^3\:=\:5}

\sf\implies({p\:-\:{\dfrac{1}{p}})^3\:=\:5^3}

\sf\implies({p\:-\:{\dfrac{1}{p}})^3\:=\:125}

Substituting -5 in (2), we get,

\sf\implies({p\:-\:{\dfrac{1}{p}})^3\:=\:-5}

\sf\implies({p\:-\:{\dfrac{1}{p}})^3\:=\:-5^3}

\sf\implies({p\:-\:{\dfrac{1}{p}})^3\:=\:-125}

Hence, The value of (p - 1/p)³ = ±125.

Similar questions