Math, asked by titunmallick4u, 2 months ago

If (p^2+1)(q^2+1) + 36 = 12(p+q);
then (p^3+q^3) =
11:11 am​

Answers

Answered by amitnrw
4

Given : (p² +1)(q² + 1)  + 36  = 12(p + q)

To Find : p³  + q³

Solution:

(p² +1)(q² + 1)  + 36  = 12(p + q)

=> p²q² + p² + q² + 1  + 36 = 12p + 12q

=>  p² + q²  + 36   -12p - 12q    + p²q² + 1 = 0

Adding and subtracting   2pq

=>  p² + q²  + 36   -12p - 12q  + 2pq  + p²q² + 1  - 2pq= 0

(p + q - 6)²   = p² + q² + 36   -12p - 12q + 2pq

(pq - 1)² = p²q² + 1  - 2pq

=> (p + q - 6)²  +  (pq - 1)²  = 0

=> p + q - 6 = 0  and pq - 1 = 0

=> p + q   = 6     and pq  =  1

p + q   = 6  

cubing both sides

=> p³ + q³ + 3pq(p + q)   = 6³

=>  p³ + q³ + 3(1)(6)   = 216

=> p³ + q³  = 198

Learn More:

if p+q=2 then find the value of p3+q3+6p2+5q2+6pq?? Please give ...

https://brainly.in/question/3240044

Answered by pulakmath007
2

SOLUTION

GIVEN

 \sf{( {p}^{2}  + 1)( {q}^{2}  + 1) + 36 = 12(p + q)}

TO DETERMINE

The value of

 \sf{ {p}^{3}  +  {q}^{3} }

EVALUATION

 \sf{( {p}^{2}  + 1)( {q}^{2}  + 1) + 36 = 12(p + q)}

 \sf{ \implies \:  {p}^{2}  {q}^{2}  + {p}^{2}  +  {q}^{2} + 1+ 36 = 12(p + q)}

 \sf{ \implies \:   {p}^{2}  +  {q}^{2} +12(p + q)  -  2pq + 36 +  {p}^{2}  {q}^{2}  - 2pq + 1= 0}

 \sf{ \implies \:   {(p + q - 6)}^{2} +  {(pq - 1)}^{2}  = 0}

We know if the sum of the squares of two real numbers are zero then they are separately zero

 \sf{  {(p + q - 6)}^{2}  = 0 \:  \: and \:  \:  {(pq - 1)}^{2}  = 0}

 \sf{ \implies \:   {(p + q - 6)}  = 0 \:  \: and \:  \:  {(pq - 1)}  = 0}

 \sf{ \implies \:   p + q  = 6 \:  \: and \:  \:pq  = 1}

 \sf{ {p}^{3}  +  {q}^{3} }

 \sf{  = {(p + q)}^{3}   - 3pq(p + q) }

 \sf{  = {(6)}^{3}   - 3 \times 6 \times 1 }

 \sf{  = 216 - 18 }

 \sf{  = 198 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

2. to verify algebraic identity a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

Similar questions