Math, asked by Jrajesh6012, 1 year ago

If P(2,-1), Q(3,4) R(-2,3) and S(-3,-2) be 4 points in a plane. Show that PQRS is a rhombus but not a square. Find the area of rhombus.

Answers

Answered by throwdolbeau
16

Answer:

The proof is explained strep-wise below :

Step-by-step explanation:

First finding the lengths of all the sides :

PQ=\sqrt{(2-3)^2+(-1-4)^2}\\\\\implies PQ=\sqrt{26}\\\\QR=\sqrt{(3+2)^2+(4-3)^2}\\\\\implies QR=\sqrt{26}\\\\RS=\sqrt{(-2+3)^2+(3+2)^2}\\\\\implies RS=\sqrt{26}\\\\PS=\sqrt{(2+3)^2+(-1+2)^2}\\\\\implies PS=\sqrt{26}

Now, length of all the sides are equal. So PQRS may be square or rhombus

So, finding the length of diagonals :

PR=\sqrt{(2+2)^2+(-1-3)^2}\\\\\implies PR=\sqrt{32}\\\\QS=\sqrt{(3+3)^2+(4+2)^2}\\\\\implies QS =\sqrt{72}

The length of diagonals are not equal so PQRS cannot be a square.

Therefore, PQRS is a rhombus not a square.

Hence Proved.

Answered by Anonymous
48

\large{\underline{\bf{\pink{Answer:-}}}}

The area of the rhombus is 24sq units.

\large{\underline{\bf{\blue{Explanation:-}}}}

\large{\underline{\bf{\green{Given:-}}}}

Four points are given as :-

✰ A(2 , -1)

✰ B(3 , 4)

✰ C(-2 ,3)

✰ D(-3, -2)

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the area of the Rhombus.

\huge{\underline{\bf{\red{Solution:-}}}}

:\implies\:AB=\sqrt{(3-2)^2+(4+1)^2}

:\implies\:AB=\sqrt{1^2+5^2}

:\implies\:AB= \sqrt{26}\:\:units\\\\

:\implies\:BC=\sqrt{(-2-3)^2+(3-4)^2}

:\implies\:BC=\sqrt{(-5)^2+(-1)^2}

:\implies\:BC =\sqrt{26}\:\:units\\\\

:\implies\:CD = \sqrt{(-3+2)^2+(-2-3)^2}

:\implies\:CD=\sqrt{(-1)^2+(-5)^2}

:\implies\:CD =\sqrt{26}\:\:units\\\\

:\implies\:DA = \sqrt{(-3-2)^2+(-2+1)^2}

:\implies\:DA=\sqrt{(-5)^2+(-1)^2}

:\implies\:CD =\sqrt{26}\:\:units\\\\

So, AB = BC = CD = DA = \:\sqrt{26}

Now ,

:\implies\:AC=\sqrt{(-2-2)^2+(3+1)^2}

:\implies\:AC = \sqrt{(-4)^2+4^2}

:\implies\:AC=\sqrt{32}

:\implies\:AC=4\sqrt{2}\\\\

:\implies\:BD=\sqrt{(-3-3)^2+(-2-4)^2}

:\implies\:BD = \sqrt{(-6)^2+(-6)^2}

:\implies\:BD=\sqrt{72}

:\implies\:BD=6\sqrt{2}\\\\

But diagonal AC ≠ diagonal BD.

so, ABCD is a quadrilateral in which all sides are equal but diagonals are not equal.

So we can say that ABCD is a rhombus but not a square.

Now,

Area of rhombus ABCD

{\purple{\bf{=1/2 ×(Product \:of \:diagonals)}}}

:\implies\:\frac{1}{2}\times\:AC\times\:BD

:\implies\:\frac{1}{2}\times\:4\sqrt{2}\times\:6\sqrt{2}

:\implies{\pink{\bf{\:24\:sq\:units.}}}

Hence,

\small{\red{\bf{ Area\: of\: rhombus\: ABCD\:<em> </em>is \:24\: sq\: unit's.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions