Math, asked by soniyashika2828, 10 months ago

if p(2,4),q(0,3),r(3,6),and s(a,b) are vertices of a parallelogram then the value of a+b is? ​

Answers

Answered by SushmitaAhluwalia
2

The value of a + b is 12.

  • Given vertices of parallelogram are

        P(2, 4), Q(0, 3), R(3, 6), S(a, b)

  • We know that, diagonals of a parallelogram bisect each other.
  • Midpoint of PR = Midpoint of QS

        (\frac{x_{1}+x_{3}}{2},\frac{y_{1}+y_{3}}{2})=(\frac{x_{2}+x_{4}}{2},\frac{y_{2}+y_{4}}{2})

        (\frac{2+3}{2},\frac{4+6}{2})=(\frac{0+a}{2},\frac{3+b}{2})

         (\frac{5}{2},\frac{10}{2})=(\frac{a}{2},\frac{3+b}{2})

  • Equating x and y coordinates, we get

           \frac{5}{2}=\frac{a}{2}, \frac{10}{2}=\frac{3+b}{2} ⇒ b = 10 - 3

          ⇒ a = 5, b = 7

  • Therefore, the value of a + b = 5 + 7 = 12.
Similar questions