Math, asked by bibhishanjagtap9920, 11 months ago

If P(2,4),Q(0,3),R(3,6),S(a,b),are the vertices of the parallelogram then find the value of a+b

Answers

Answered by k04358050
1

Answer:

a=5 b=7

Step-by-step explanation:

(a/2, b+3/2 )=(5/2, 10/2)

a=5 ,b=10-3

a=5, b=7

Answered by JeanaShupp
4

The value of a+b=12 .

Explanation:

We know that

  • Diagonals of parallelogram bisects each other.

So , If P(2,4),Q(0,3),R(3,6),S(a,b),are the vertices of the parallelogram then

Mid-Point of PR = Mid-Point of QS

\Rightarrow (\dfrac{2+3}{2},\dfrac{4+6}{2})=(\dfrac{0+a}{2},\dfrac{3+b}{2})\\\\\Rightarrow\ \dfrac{a}{2}=\dfrac{5}{2}\ \ \ , \ \ \ \ \dfrac{3+b}{2}=\dfrac{10}{2}\\\\\Rightarrow\ a=5 \ \ \ ,\ \ 3+b=10\Rightarrow\ b=7\\\\\Rightarrpow\ (a,b)=(5,7)

The value of a+b=5+7=12

Hence, the value of a+b=12 .

# Learn more :

If P(2,4), Q(0,3) ,R(3,6) and S(5,y) are vertices of the parallelogram PQRS then find the value of y?

https://brainly.in/question/6544741

Similar questions