Math, asked by bhavishyfanclub, 4 months ago

if p = 2-√5/2+√5 and q = 2+√5/2-√5 find p+q​

Answers

Answered by Anonymous
2

Solution:

Refer the attachment.

Attachments:
Answered by Anonymous
1

Solution

Given:-

 \tt\implies \: p =  \dfrac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  \:  \:  \: and \:  \: q =  \dfrac{2 +  \sqrt{5} }{2 -  \sqrt{5} }

To Find:-

 \tt \implies \: p + q

Now We can write as

 \tt \implies \:  \dfrac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  +  \dfrac{2 +  \sqrt{5} }{2 -  \sqrt{5} }

Taking LCM

 \tt \implies \:  \dfrac{(2 -  \sqrt{5} )(2 -  \sqrt{5} ) + (2 +  \sqrt{5})(2 +  \sqrt{5} )}{(2 +  \sqrt{5} )(2 -  \sqrt{5})}

Using This identities

 \tt \implies \: (a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ \tt \implies \: (a  -  b)^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab

 \tt \implies \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2}

\tt \implies \:  \dfrac{(2 -  \sqrt{5} )^{2} +(2 +  \sqrt{5} )^{2} }{(2 {}^{2}  -  (\sqrt{5}) ^{2} )}

 \tt \implies \:   \dfrac{4 + 5 - 4 \sqrt{5}  + 4 + 5 + 4 \sqrt{5} }{4 - 5}

 \tt \implies \dfrac{9 + 9}{ - 1}

 \tt \implies  - 18

Similar questions