Math, asked by swapnanagunuri00, 4 months ago

If p=(2,5),and Q=(x,-7)then the possible values of x so that PQ=13 are

Answers

Answered by nithinvinayak2006
0

Answer:

-3 or 7

Step-by-step explanation:

√(x2-x1)²+(x2-x1)²

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169x²-4x-21=0

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169x²-4x-21=0x²+3x-7x-21=0

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169x²-4x-21=0x²+3x-7x-21=0(x+3)-7(x+3)=0

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169x²-4x-21=0x²+3x-7x-21=0(x+3)-7(x+3)=0(x+3)(x-7)=0

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169x²-4x-21=0x²+3x-7x-21=0(x+3)-7(x+3)=0(x+3)(x-7)=0x=-3

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169x²-4x-21=0x²+3x-7x-21=0(x+3)-7(x+3)=0(x+3)(x-7)=0x=-3 or

√(x2-x1)²+(x2-x1)²(√(x-2)²+(5+7)²)²=13²(x-2)²+12²=13²x²+4-4x+144=169x²-4x-21=0x²+3x-7x-21=0(x+3)-7(x+3)=0(x+3)(x-7)=0x=-3 orx=7

Similar questions