If p = 2 - a ,, prove that a² + 6ap + p³ - 8 = 0
Plz Help....
Answers
Answered by
2
Given:
p=2-a
To prove:
a²+6ap+p³-8=0
Proof:
RHS=0
LHS:
a²+6ap+p³-8
Put p=2-a in a²+6ap+p³-8
a²+6a(2-a)+(2-a)³-8
a²+12a-6a²+[2³-a³-3×2a(2-a)]-8
12a-6a²+8-a³-6a(2-a)-8
12a-6a²+8-a³-12a+6a²-8=0
Therefore, LHS=RHS
Hope this helps you
Please mark as brainliest
Answered by
2
Step-by-step explanation:
a²+6a(2-a)+(2-a)³-8=0
a² +12a-6à²+(2)³-(a)³-3(2)²(a)+3(2)(a)².
(using identity in (2-a)³= x³-y³=x³-y³-3x²y+3xy²)
a²+12a-6a²+8-a³-12a+6a²
-a³+a²-6a²+6a²+12a-12a+8
-a³+a²+0+0+8
changing the sign off -a³ to +a³
a²=8
a=√8
Similar questions