Math, asked by MIHIR866, 8 months ago

If p = 2- a, prove that a3+6ap+p3- 8 = 0

Answers

Answered by Anonymous
8

Step-by-step explanation:

 \sf\ p = 2 - a \\  \\  \sf\  {a}^{3} + 6ap +  {p}^{3} - 8 \\  \\    \sf\ \implies: {a}^{3}  + 6a(2 - a) +  {(2 - a)}^{3}  - 8 \\  \\    \sf\ \implies: {a}^{3} + 12a { - 6a}^{2}  +  {2}^{ 3}  - 3. {2}^{2}.a + 3.2. {a}^{2}  -  {a}^{3}  - 8 \\  \\  \sf\ \implies: {a}^{3} + 12a { - 6a}^{2} + 8 {- 12a} +  {6a}^{2} { - a}^{3}  - 8    \\  \\\sf\ \implies: {a}^{3} { - a}^{3}    + 12a - 12a  { - 6a }^{2}  +  {6a}^{2} + 8 - 8   \\  \\  \huge{\sf\ \implies:0 } \:  \:  \:  \ddot \smile \\  \\  \sf\  \:  \:  \:  \:  \underline{\red{prove}}

Similar questions