Math, asked by RajgiriYadav6085, 11 months ago

If p=2-root5/2+root5 and q =2+root 5/2-root5 find the values of p+q 2ndp-q

Answers

Answered by mysticd
7

 Given \: p = \frac{(2-\sqrt{5})}{(2+\sqrt{5})} \\and \: q = \frac{(2+\sqrt{5})}{(2-\sqrt{5})}

 \red{i ) p + q } \\ = \frac{(2-\sqrt{5})}{(2+\sqrt{5})} +  \frac{(2+\sqrt{5})}{(2-\sqrt{5})}\\= \frac{ (2-\sqrt{5})^{2} + (2+\sqrt{5})^{2}}{(2+\sqrt{5})(2-\sqrt{5})} \\= \frac{2[2^{2} + (\sqrt{5})^{2}]}{2^{2} - (\sqrt{5})^{2} }

___________________

By Algebraic Identities:

1 . (a+b)² + (a-b)² = 2(+)

2. (a+b)(a-b) = -

3. (a+b)² - (a-b)² = 4ab

____________________

 = \frac{ 2( 4 +5 )}{4-5} \\= \frac{ 18}{-1} \\= - 18

 \red{ii ) p - q } \\=  \frac{(2-\sqrt{5})}{(2+\sqrt{5})} -  \frac{(2+\sqrt{5})}{(2-\sqrt{5})}\\= \frac{ (2-\sqrt{5})^{2} - (2+\sqrt{5})^{2}}{(2+\sqrt{5})(2-\sqrt{5})} \\= \frac{-4 \times 2 \times \sqrt{5} }{2^{2} - (\sqrt{5})^{2} }

 = \frac{-8\sqrt{5} }{(4-5)} \\= 8\sqrt{5} \:--(2)

Therefore.,

 \red{i )p + q } \green {= -18 }

 \red{ii ) p - q } \green {= 8\sqrt{5} }

•••♪

Similar questions