Math, asked by supriya9060, 4 months ago

If p=2-root5/2+root5 and q=2+root5/2-root5 then find p^2+q^2 and p^2-q^2.​

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given:

  • p = (2 - √5)/(2 + √5)
  • q = (2 + √5)(2 - √5)

To Find:

  • p² - q² = ?

Solution:

Given,

 \sf \implies p =  \dfrac{2 -  \sqrt{5} }{2 +  \sqrt{5} }

 \sf \implies p =  \dfrac{(2 -  \sqrt{5} )}{(2 +  \sqrt{5}) }  \times  \dfrac{(2 -  \sqrt{5} )}{(2 -  \sqrt{5})}

 \sf \implies p =  \dfrac{(2 -  \sqrt{5} )^{2} }{ {(2)}^{2} -  {( \sqrt{5} )}^{2} }

 \sf \implies p =  \dfrac{4 + 5 - 2 \times 2 \times  \sqrt{5}}{4- 5 }

 \sf \implies p =  \dfrac{9-4\sqrt{5}}{ - 1 }

 \sf \implies p = 4\sqrt{5} - 9

Now,

 \sf \implies q=  \dfrac{2 +  \sqrt{5} }{2 - \sqrt{5} }

 \sf \implies q=  \dfrac{(2 +  \sqrt{5}) }{(2 - \sqrt{5})}  \times  \dfrac{(2 + \sqrt{5}  )}{(2 +  \sqrt{5} )}

 \sf \implies q=  \dfrac{(2 +  \sqrt{5})^{2}  }{ {(2)}^{2}-( \sqrt{5})^{2} }

 \sf \implies q=  \dfrac{4 + 5 + 4 \sqrt{5} }{4 - 5}

 \sf \implies q=  \dfrac{9+ 4 \sqrt{5} }{ - 1}

 \sf \implies q=  - 9 - 4 \sqrt{5}

Therefore,

 \sf {p}^{2}  -  {q}^{2}

 \sf  =(p + q)(p - q)

 \sf =  \{(4 \sqrt{5}  - 9) + ( - 9 - 4 \sqrt{5} ) \} \{(4 \sqrt{5} - 9) - ( - 9 - 4 \sqrt{5} ) \}

 \sf = 18 \times 8 \sqrt{5}

 \sf = 144 \sqrt{5}

 \sf\implies{p}^{2}  -  {q}^{2} = 144\sqrt{5}

Hence, p² - q² = 144√5

Answer:

  • p² - q² = 144
Similar questions