Physics, asked by cckorrapati, 9 months ago

If P=2i+3j-4k and Q=5i+2j+4k find the angle between the two vectors ​

Answers

Answered by BrainlyPopularman
32

GIVEN :

 \:  \:  \: \bf \to \overrightarrow{P}=2 \hat{i}+3 \hat{j}-4 \hat{k}

 \:  \:  \: \bf \to \overrightarrow{Q}=5 \hat{i}+2 \hat{j} + 4 \hat{k}

TO FIND :

• Angle between vectors = ?

SOLUTION :

• We know that –

  \implies \large{ \boxed{ \bf  \cos( \theta) =  \dfrac{\overrightarrow{P}. \overrightarrow{Q}}{ | \overrightarrow{P}| | \overrightarrow{Q}| }}}

 \bf  \implies   \cos( \theta) =  \dfrac{(2 \hat{i}+3 \hat{j}-4 \hat{k} ). (5 \hat{i}+2 \hat{j} + 4 \hat{k})}{  |2 \hat{i}+3 \hat{j}-4 \hat{k} | |5 \hat{i}+2 \hat{j} + 4 \hat{k}|}

 \bf  \implies   \cos( \theta) =  \dfrac{(2 \times 5) + (3 \times 2) - (4 \times 4)}{ \sqrt{{(2)}^{2} +  {(3)}^{2} +  {( - 4)}^{2} } \sqrt{ {(5)}^{2} +  {(2)}^{2} +  {(4)}^{2}}}

 \bf  \implies   \cos( \theta) =  \dfrac{10+6-16}{ \sqrt{4 +9+16} \sqrt{25+4+4}}

 \bf  \implies   \cos( \theta) =  \dfrac{16-16}{ \sqrt{29} \sqrt{33}}

 \bf  \implies   \cos( \theta) =  \dfrac{0}{ \sqrt{29} \sqrt{33}}

 \bf  \implies   \cos( \theta) = 0

 \bf  \implies   \cos( \theta) = \cos \left( \dfrac{\pi}{2} \right )

 \bf  \large \implies{ \boxed{ \bf  \theta =\dfrac{\pi}{2} }}

Hence , Angle between vectors is 90°.

Similar questions