if p=2q + 6 , then p² - 4q² - 24q - 36
Answers
Answer:
Step-by-step explanation:
Given that p=2q+6Given expression is p^3-8q^3-36pq-216p3−8q3−36pq−216To find the value of the given expression :First solve the given expressionSubstitute the value of p in the given expression we getp^3-8q^3-36pq-216p3−8q3−36pq−216=(2q+6)^3-8q^3-36q(2q+6)-216=(2q+6)3−8q3−36q(2q+6)−216 ( by using the identity (a+B)^3=a^3+3a^2b+3ab^2+b^3(a+B)3=a3+3a2b+3ab2+b3 and distributive property a(x+y)=ax+ay )=(2q)^3+3(2q)^2(6)+3(2q)(6)^2+6^3-8q^3-36q(2q)-36q(6)-216=(2q)3+3(2q)2(6)+3(2q)(6)2+63−8q3−36q(2q)−36q(6)−216=(2)^3(q)^3+18(2)^2(q)^2+6q(36)+216-8q^3-72q^{1+1}-216q-216=(2)3(q)3+18(2)2(q)2+6q(36)+216−8q3−72q1+1−216q−216
( by using the identity a^m.a^n=a^{m+n}am.an=am+n )
=8q^3+72q^2+216q-8q^3-72q^2-216q=8q3+72q2+216q−8q3−72q2−216q ( adding the like terms )=0=0
Therefore p^3-8q^3-36pq-216=0p3−8q3−36pq−216=0
Therefore the value of p^3-8q^3-36pq-216p3−8q3−36pq−216 is 0
Answer:
Step-by-step explanation: