Math, asked by suryasaha151, 1 month ago

if p=3-√5/3+√5 and q=3+√5/3-√5, find the value of p^2+q^2​

Answers

Answered by Yuseong
34

Answer:

47

Step-by-step explanation:

As per the provided information in the given question,

\longmapsto\rm {p = \dfrac{3-\sqrt{5}}{3+\sqrt{5}} } \\

\longmapsto\rm {q = \dfrac{3+\sqrt{5}}{3-\sqrt{5}} } \\

We are asked to calculate the value of + .

We know that,

→ (p + q)² = p² + q² + 2pq

(p + q)² - 2pq = +

Finding the value of (p + q)² :

\longmapsto\rm {(p + q)^2 = { \Bigg [ \dfrac{3-\sqrt{5}}{3+\sqrt{5}} +  \dfrac{3+\sqrt{5}}{3-\sqrt{5}}\Bigg ] }^2} \\

\longmapsto\rm {(p + q)^2= { \Bigg [ \dfrac{(3-\sqrt{5})^2 + (3 + \sqrt{5})^2}{(3+\sqrt{5})(3- \sqrt{5}) } \Bigg ] }^2} \\

\longmapsto\rm { (p + q)^2= { \Bigg [ \dfrac{(9 + 5- 6\sqrt{5}) + (9 + 5+ 6\sqrt{5}) }{(3)^2 - (\sqrt{5})^2 } \Bigg ] }^2} \\

\longmapsto\rm { (p + q)^2= { \Bigg [ \dfrac{9 + 5\cancel{- 6\sqrt{5}} + 9 + 5\cancel{+ 6\sqrt{5}} }{9 -5 } \Bigg ] }^2} \\

\longmapsto\rm { (p + q)^2= { \Bigg [ \dfrac{9 + 5+ 9 + 5}{4 } \Bigg ] }^2} \\

\longmapsto\rm { (p + q)^2= { \Bigg [ \dfrac{14+ 14}{4 } \Bigg ] }^2} \\

\longmapsto\rm { (p + q)^2= { \Bigg [ \dfrac{28}{4 } \Bigg ] }^2} \\

\longmapsto\rm { (p + q)^2= {(7)}^2} \\

\longmapsto\bf { (p + q)^2= 49 } \\

Finding the value of 2pq :

\longmapsto\rm { 2pq= 2 \Bigg (  \dfrac{\cancel{3-\sqrt{5}}}{\cancel{3+\sqrt{5}}} \times  \dfrac{\cancel{3+\sqrt{5}}}{\cancel{3-\sqrt{5}} } \Bigg )} \\

\longmapsto\rm { 2pq = 2(1)} \\

\longmapsto\bf { 2pq = 2} \\

Finding the value of p² + q² :

→ (p + q)² - 2pq = p² + q²

→ 49 - 2 = p² + q²

47 = p² + q²

Therefore, the required answer is 47.

(*Note : Swipe left to view full steps.)

Similar questions