Math, asked by swati3155, 1 year ago

If p=3-√5/3+√5 and q=3+√5/3-√5 then find the value of p^2+q^2

Answers

Answered by TakenName
3

Answer:

47

Step-by-step explanation:

p and q needs rationalization.

p=\frac{(3-\sqrt{5})^2 }{3^2-(\sqrt{5})^2  } =\frac{14-6\sqrt{5} }{4} =\frac{7-3\sqrt{5} }{2}

q=\frac{(3+\sqrt{5})^2 }{3^2-(\sqrt{5})^2  } =\frac{14+6\sqrt{5} }{4} =\frac{7+3\sqrt{5} }{2}

Thus,

pq=\frac{7^2-(3\sqrt{5})^2 }{4} =\frac{4}{4} =1(A)

p+q=\frac{14}{2} =7(B).

p^2+q^2=(p+q)^2-2pq(C)

∵On the other hand, the identity p^2+2pq+q^2=(p+q)^2 can be used

to obtain p^2+q^2=(p+q)^2-2pq.

∴Therefore, p^2+q^2=49-2=47.

Similar questions