Math, asked by sckisan, 9 months ago

If p=3-root 5/3+root 5 and q=3+root5/3-root 5,find the value of p^2+q^2.​

Answers

Answered by ITzBrainlyGuy
6

{ \bf{ \underline{ \underline \orange{Answer}}}}

Given that

{  \bf \purple{ \implies p =  \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} } }} \\ { \bf \red{  \implies q =  \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} } }}

Assuming the value of p as equation ( 1 )

& Assuming the value of q as equation ( 2 )

Taking equation ( 1 ) & S.O.B.S ( squaring on both sides )

{ \bf \purple{ \to  {p}^{2}  =  ( \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} })^{2} =  \frac{ {(3 -  \sqrt{5}) }^{2} }{ {(3 +  \sqrt{5}) }^{2} }    }}

Using (a - b)² = a² - 2ab + b²

(a + b)² = a² + 2ab + b²

{ \bf \purple{ \to {p}^{2} =  \frac{ {3}^{2} -2( 3 )(\sqrt{5})  +  {( \sqrt{5} )}^{2}  }{ {3}^{2} + 2(3)( \sqrt{5}) +  {( \sqrt{5} )}^{2}   }  }}

{ \bf \purple{ \to  {p}^{2} =  \frac{9 - 6 \sqrt{5} + 5 }{9 + 6 \sqrt{5}  + 5} =  \frac{14 - 6 \sqrt{5} }{14 + 6 \sqrt{5} }   }}

Assuming as equation ( 3 )

Taking equation ( 2 ) S.O.B.S

{ \bf \red{ \to  {q}^{2}  =  (\frac{3 +  \sqrt{5} }{3 -  \sqrt{5} } )^{2}  }}

{ \bf \red{ \to  {q}^{2} =  \frac{ {3}^{2}  + 2(3){( \sqrt{5} ) }  + { (\sqrt{5}) }^{2} }{ {3}^{2} - 2(3)(\sqrt{5})  +  {( \sqrt{5} )}^{2}  }   }}

{ \bf \red{ \to {q}^{2} =  \frac{9 +6 \sqrt{5}  + 5 }{9 -  6\sqrt{5}  + 5}   =  \frac{14 + 6 \sqrt{5} }{14 - 6 \sqrt{5} } }}

Assuming as equation ( 4 )

Now,

equation ( 3 ) + equation ( 4 )

{ \bf { \green{ {p}^{2}}  +  \orange   {{q}^{2}} =  \green{\frac{14 - 6 \sqrt{5} }{14 + 6 \sqrt{5} } }  +  \orange{ \frac{14 + 6 \sqrt{5} }{14 - 6 \sqrt{5} } }}}

Using

→ (a - b)(a + b) = a² - b²

→ (a + b)² = a² + 2ab + b²

→ (a - b)² = a² - 2ab + b²

{ \bf { \green{ {p}^{2} }  + \orange{ {q}^{2}   } =  \pink{\frac{ {(14 - 6 \sqrt{5} )}^{2}  +  {(14 + 6 \sqrt{5} )}^{2} }{ {14}^{2}  -  ({6 \sqrt{5} )}^{2} } }  }}

{ \bf{ \green{ {p}^{2}  } +  \orange{ {q}^{2}  } =  \pink{ \frac{ {14}^{2} - 2(14)(6 \sqrt{5}) +  {(6 \sqrt{5}) }^{2}   +  {14}^{2}  + 2(14)(6 \sqrt{5}) +  {(6 \sqrt{5}) }^{2}  }{196 - 180 } }}}

 {\bf{ \green{ {p}^{2}  }  + \orange{ {q}^{2} } =   \pink{\frac{196 + 180 + 196 + 180}{36}} }}

{ \bf{ \green{ {p}^{2} } +  \orange{ {q}^{2} }=   \pink{\dfrac{752}{36} } }}

+ = 20.8

Similar questions