Math, asked by Rupali7705, 1 year ago

If p=3i-4j, then what is the perpendicular vector p?

Answers

Answered by adanishpasha123
8

Answer:

the dot product must be 0

let the perpendicular force be p = xi+yj

(xi+yj).(4i-3j)=0

4x-3y=0

x=3/4y

p=3/4i+j or p=3i+4j

Step-by-step explanation:

Answered by aliyasubeer
0

Answer:

4 \hat{i}+3 \hat{j}$  is the perpendicular vector p.

Step-by-step explanation:

Given:

$$\overrightarrow{\mathrm{P}}=3 \hat{i}-4 \hat{j}$$

For perpendicular vector, dot product = 0.

For a vector (a \hat{i}+b \hat{j}) is$  perpendicular to (b \hat{i}-a \hat{j}).

(3 \hat{i}-4 \hat{j})\cdot(a \hat{i}+b \hat{j})=0.

So, dot product of $\overrightarrow{\mathrm{P}} \& 4 \hat{i}+3 \hat{j}$ is equal to zero

$$\begin{aligned}\overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{A}} &=(3 \hat{i}-4 \hat{j}) \cdot(4 \hat{i}+3 \hat{j}) \\&=12-12 \\&=0\end{aligned}$$

Similar questions