Math, asked by Harshita7e737, 1 month ago

If P + √3Q + √5R + √15S = 1/1+√3+√5, then find the value of P is

Answers

Answered by Salmonpanna2022
3

Step-by-step explanation:

\mathsf{Consider :\;\dfrac{1}{1 + \sqrt{3} + \sqrt{5}}}

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;1 + \sqrt{3} - \sqrt{5} :}

\mathsf{\implies \dfrac{1 + \sqrt{3} - \sqrt{5}}{(1 + \sqrt{3} + \sqrt{5})(1 + \sqrt{3} - \sqrt{5})}}

★  We know that : (a + b)(a - b) = -

\mathsf{\implies \dfrac{1 + \sqrt{3} - \sqrt{5}}{(1 + \sqrt{3})^2 - (\sqrt{5})^2}}

★  We know that : (a + b)² = + + 2ab

\mathsf{\implies \dfrac{1 + \sqrt{3} - \sqrt{5}}{1 + (\sqrt{3})^2 + 2\sqrt{3} - 5}}

\mathsf{\implies \dfrac{1 + \sqrt{3} - \sqrt{5}}{1 + 3 + 2\sqrt{3} - 5}}

\mathsf{\implies \dfrac{1 + \sqrt{3} - \sqrt{5}}{2\sqrt{3} - 1}}

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;2\sqrt{3} + 1 :}

\mathsf{\implies \dfrac{(1 + \sqrt{3} - \sqrt{5})(2\sqrt{3} + 1)}{(2\sqrt{3} - 1)(2\sqrt{3} + 1)}}

\mathsf{\implies \dfrac{(2\sqrt{3} + 1 + (\sqrt{3})(2\sqrt{3}) + \sqrt{3} - (\sqrt{5})(2\sqrt{3}) - \sqrt{5})}{(2\sqrt{3})^2 - 1}}

\mathsf{\implies \dfrac{(3\sqrt{3} + 1 + 2(\sqrt{3})^2 - 2(\sqrt{5\times3}) - \sqrt{5})}{4(\sqrt{3})^2 - 1}}

\mathsf{\implies \dfrac{3\sqrt{3} + 1 + 2(3) - 2\sqrt{15} - \sqrt{5}}{(4)(3) - 1}}

\mathsf{\implies \dfrac{3\sqrt{3} + 1 + 6 - 2\sqrt{15} - \sqrt{5}}{12 - 1}}

\mathsf{\implies \dfrac{7 + 3\sqrt{3} - \sqrt{5} - 2\sqrt{15}}{11}}

\mathsf{\implies \dfrac{7}{11} + \dfrac{3\sqrt{3}}{11} - \dfrac{\sqrt{5}}{11} - \dfrac{2\sqrt{15}}{11}}

\mathsf{\implies \dfrac{7}{11} + \dfrac{3\sqrt{3}}{11} - \dfrac{\sqrt{5}}{11} - \dfrac{2\sqrt{15}}{11} = P + \sqrt{3}Q + \sqrt{5}R + \sqrt{15}S}

Comparing both sides, We can notice that :

\mathsf{\implies P = \dfrac{7}{11}}

Similar questions