Math, asked by Akshaykanojiy6929, 3 months ago

If P(4; 2) is the midpoint between A and B(6:3), determine he coordinates of A

Answers

Answered by Anonymous
7

\large\sf\underline{Given:}

  • Midpoint P = ( 4 , 2 )

  • Point B = ( 6 , 3 )

\large\sf\underline{To\:find:}

  • Coordinates of point A

\large\sf\underline{Solution:}

Let the coordinates of A be ( x₁ , y₁ )

From the mid-point theorem ,

We know , mid-point ( x , y )

\small{\underline{\boxed{\mathrm\purple{x=\frac{x₁+x₂}{2}\:\:and\:\:y=\frac{y₁+y₂}{2}}}}}

Here ,

  • x = 4⠀⠀‎⠀,⠀⠀‎ y = 2

  • x₂ = 6⠀⠀‎ ,⠀⠀ y₂ = 3

Now substituting the value in our Formula :

\sf➞\:x=\frac{x₁+x₂}{2}

\sf➞\:4=\frac{x₁+6}{2}

  • Cross multiplying

\sf➞\:x₁+6=4×2

\sf➞\:x₁+6=8

\sf➞\:x₁=8-6

\small\fbox\pink{➞\:x₁=2}

Similarly ,

\sf➞\:y=\frac{y₁+y₂}{2}

\sf➞\:2=\frac{y₁+3}{2}

  • Cross multiplying

\sf➞\:y₁+3=2×2

\sf➞\:y₁+3=4

\sf➞\:y₁=4-3

\small\fbox\pink{➞\:y₁=1}

So the coordinates of A = ( x₁ , y₁ ) {\sf{{\orange{=\:(2,1)}}}}

!! Hope it helps !!

Similar questions