Math, asked by jane07, 8 months ago

If P= ₹4,200 , R=12% , T= 2years. Find the total amount to be in : a) Simple interest. b) compound interest. c) difference in amount of simple interest and compound interest​

Answers

Answered by kulkarninishant346
2

Answer:

add it =₹ 48903 and 7 years

Answered by AbinayaIX
1

Step-by-step explanation:

i)simple \: interest =  \frac{prt}{100}

 \frac{(4200)(12)(2)}{100}  =  \frac{100800}{100}  = 1008

compound \: interest = a = p {(1 + \frac{r}{100} )}^{n}

ii) where P=rs.4200

R =12%

T (n)=2years

amount = 4200 {(1 +  \frac{12}{100} )}^{2}

 = 4200( { \frac{112}{100} )}^{2}

4200 { (\frac{28}{25}) }^{2}

4200( \frac{ {28}^{2} }{ {25}^{2} } )

4200 \times  \frac{784}{625}

simplify 4200 and 625

168 \times  \frac{784}{25}

 \frac{168 \times784 }{25}

 \frac{131712}{25}  = 5268.48

amount = 5268.48

ci = a - p

 = 5268.48 - 4200  = 1068.48

compount \: interest = rs.1068.48

c)

amt.in \: si \:  - amt \: in \: ci

amt.in \: si \:  = principle+ intrest

amt. = 4200 + 1008 = 5208

diff. = 5268.48 - 5208

 = 60.48

hope it's helpful...

Similar questions