Math, asked by gayan27benipal01, 1 year ago

if p=4+√5/4-√5 and q=4-√5/4+ √5 find p^2 +q^2

Answers

Answered by Brâiñlynêha
5

\huge\mathbb{\underline{\pink{SOLUTION:-}}}

\bold{Given:-}\begin{cases}\sf{p=\frac{4+\sqrt{5}}{4-\sqrt{5}}}\\ \\ \sf{q=\frac{4-\sqrt{5}}{4+\sqrt{5}}}\end{cases}

  • We have to find the value of
  • \tt p{}^{2}+q{}^{2}

\bf\underline{\underline{According\:to\: Question:-}}

  • 1st Rationalize the value of

\sf\implies  p=\frac{4+\sqrt{5}}{4-\sqrt{5}}\\ \\ \sf\implies p=\frac{4+\sqrt{5}}{4-\sqrt{5}}\times \frac{4+\sqrt{5}}{4+\sqrt{5}}\\ \\ \sf\implies p=\frac{(4+\sqrt{5}){}^{2}}{(4){}^{2}-(\sqrt{5}){}^{2}}\\ \\ \sf\implies p=\frac{(4){}^{2}+(\sqrt{5}){}^{2}+2\times 4\times \sqrt{5}}{16-5}\\ \\ \sf\implies p=\frac{16+5+8\sqrt{5}}{11}\\ \\ \sf\implies p=\frac{21+8\sqrt{5}}{11}

  • The value of p is
  • \sf \frac{21+8\sqrt{5}}{11}

  • Now the value of q

\sf\implies q=\frac{4-\sqrt{5}}{4+\sqrt{5}}\\ \\ \sf\implies q=\frac{4-\sqrt{5}}{4+\sqrt{5}}\times \frac{4-\sqrt{5}}{4-\sqrt{5}}\\ \\ \sf\implies q=\frac{(4-\sqrt{5}){}^{2}}{(4){}^{2}-(\sqrt{5}){}^{2}}\\ \\ \sf\implies q=\frac{(4){}^{2}+(\sqrt{5}){}^{2}-2\times 4\times \sqrt{5}}{16-5}\\ \\ \sf\implies q=\frac{16+5-8\sqrt{5}}{11}\\ \\ \sf\implies q=\frac{21-8\sqrt{5}}{11}

  • The value of q is
  • \sf q=\frac{21-8\sqrt{5}}{11}

\sf The\:value\:of\:p{}^{2}\\ \\ \sf\implies [\frac {21+8\sqrt{5}}{11}]{}^{2}=\frac{(21){}^{2}+(8\sqrt{5}){}^{2}}{(11){}^{2}}\\ \\ \sf\implies  p{}^{2}=\frac{441+64\times 5}{121}\\ \\ \sf\implies p{}^{2}=\frac{441+320}{121}=\frac{761}{121}

\bf\implies p{}^{2}=\frac{761}{121}

\sf The\:value\:of\:q{}^{2}\\ \\ \sf\implies [\frac {21-8\sqrt{5}}{11}]{}^{2}=\frac{(21){}^{2}-(8\sqrt{5}){}^{2}}{(11){}^{2}}\\ \\ \sf\implies q{}^{2}=\frac{441-64\times 5}{121}\\ \\ \sf\implies q{}^{2}=\frac{441-320}{121}=\cancel{\frac{121}{121}}=1

\bf\implies q{}^{2}=1

\boxed{\mathfrak{p{}^{2}=\frac{761}{121}}}

\boxed{\mathfrak{q{}^{2}=1}}

\boxed{\sf{Now\: p{}^{2}+q{}^{2}}}

\sf \implies p{}^{2}+q{}^{2}=\frac{761}{121}+1\\ \\ \sf\implies p{}^{2}+q{}^{2}=\frac{761+121}{121}\\ \\ \sf\implies p{}^{2}+q{}^{2}=\frac{882}{121}

\boxed{\mathfrak{\red{p{}^{2}+q{}^{2}=\frac{882}{121}}}}

#BAL

#answerwithquality

Similar questions