Math, asked by nidhi7031, 8 months ago

If p=5-2√6 ; find p to the power 2 +1/p to the power 2

Answers

Answered by srirenuvalli
0

Answer:

I couldn't understand

Step-by-step explanation:

mark me as brainiest please.....

Answered by DrNykterstein
8

 \underline{ \sf Given}  \\ \star \sf \quad p = 5 - 2 \sqrt{6}  \\  \\ \underline{ \sf To \:  Find} \\  \star \quad \sf  {p}^{2}  +  \frac{1}{ {p}^{2} }  \\  \\  \underline{ \sf Solution} \\    \sf \rightarrow \quad p = 5 - 2 \sqrt{6}  \\  \\ \sf \rightarrow \quad  \frac{1}{p}  =  \frac{1}{5 - 2 \sqrt{6} }  \\  \\ \sf \rightarrow \quad  \frac{1}{p}  =  \frac{1}{5 - 2 \sqrt{6} }  \times  \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} }  \\  \\ \sf \rightarrow \quad  \frac{1}{p}  =  \frac{5 + 2 \sqrt{6} }{ {(5)}^{2} -  {(2 \sqrt{6} )}^{2}  }  \\  \\ \sf \rightarrow \quad  \frac{1}{p}  =  \frac{5 + 2 \sqrt{6} }{25 - 24}  \\  \\ \sf \rightarrow \quad  \frac{1}{p}  = 5 + 2 \sqrt{6}  \\  \\   \quad \sf Add \: p \: both \: sides  \\  \\  \sf \rightarrow \quad   p +  \frac{1}{p}    = 5 +  \cancel{2 \sqrt{6}} + 5   - \cancel{ 2 \sqrt{6}}    \\  \\ \sf \rightarrow \quad  p +  \frac{1}{p}  = 10 \\  \\  \sf \quad Square \: both \: sides \\  \\ \sf \rightarrow \quad  \bigg(p +  \frac{1}{p}  \bigg)^{2}  =  {10}^{2}  \\  \\ \sf \rightarrow \quad  {p}^{2}  +  \frac{1}{ {p}^{2} }  + 2 \times  \cancel{p} \times  \frac{1}{ \cancel{p}}  = 100 \\  \\ \sf \rightarrow \quad  {p}^{2}  +  \frac{1}{ {p}^{2} }  = 100 - 2 \\  \\ \sf \rightarrow \quad  \boxed{\sf \red{{p}^{2}  +  \frac{1}{ {p}^{2} }  = 98}} \\  \\  \underline{ \sf Properties \:  Used }  \\ \\    \sf \hookrightarrow  \quad {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

Similar questions