If p = 5 −√21/ 2 , prove that ( p3 + 1/ p3 ) – 5 ( p2 + 1/ p 2 ) + ( p + 1/p ) = 0.
Answers
Answered by
2
Step-by-step explanation:
Given If p = 5 −√21/ 2 prove that ( p3 + 1/ p3 ) – 5 ( p2 + 1/ p 2 ) + ( p + 1/p ) = 0.
- Let p = 5 - √21 / 2
- Now 1/p = 2 / 5 - √21
- Rationalising the denominator we get
- 1 / p = 2 / 5 - √21 x 5 + √21 / 5 + √21
- = 2 (5 + √21) / 25 – 21
- = 2(5 + √21) / 4
- Or 1/p = 5 + √21 / 2
- Now 1 / p + p = 5 + √21 / 2 + 5 - √21 / 2
- = 10 / 2
- So 1/p + p = 5
- Now (p + 1/p)^2 = p^2 + 1/p^2 + 2 p x 1/p
- (5)^2 = p^2 + 1/p^2 + 2
- So p^2 + 1/p^2 = 23
- Now p^3 + 1/p^3 = (p + 1/p)(p^2 +1/p^2 – p x 1/p) (using (a + b)^3 )
- = 5 (23 – 1)
- = 5 x 22
- = 110
- Now substituting the values we get
- (p^3 + 1/p^3) – 5(p^2 + 1/p^2) + (p + 1/p)
- 110 – 5(23) + (5)
- 110 – 115 + 5
- = 0
Reference link wil be
https://brainly.in/question/2081983
# BAL
Similar questions