Math, asked by kartikharti1227, 1 year ago

If p = 5 −√21/ 2 , prove that ( p3 + 1/ p3 ) – 5 ( p2 + 1/ p 2 ) + ( p + 1/p ) = 0.

Answers

Answered by knjroopa
2

Step-by-step explanation:  

Given If p = 5 −√21/ 2 prove that ( p3 + 1/ p3 ) – 5 ( p2 + 1/ p 2 ) + ( p + 1/p ) = 0.

  • Let p = 5 - √21 / 2
  • Now 1/p = 2 / 5 - √21
  • Rationalising the denominator we get
  • 1 / p = 2 / 5 - √21 x 5 + √21 / 5 + √21
  •        = 2 (5 + √21) / 25 – 21
  •       = 2(5 + √21) / 4
  • Or 1/p = 5 + √21 / 2
  • Now 1 / p + p = 5 + √21 / 2 + 5 - √21 / 2
  •                      = 10 / 2
  • So 1/p + p = 5
  • Now (p + 1/p)^2 = p^2 + 1/p^2 + 2 p x 1/p
  •           (5)^2 = p^2 + 1/p^2 + 2
  •  So p^2 + 1/p^2 = 23
  • Now p^3 + 1/p^3 = (p + 1/p)(p^2 +1/p^2 – p x 1/p) (using (a + b)^3 )
  •                            = 5 (23 – 1)
  •                           = 5 x 22
  •                           = 110
  • Now substituting the values we get
  • (p^3 + 1/p^3) – 5(p^2 + 1/p^2) + (p + 1/p)
  •        110 – 5(23) + (5)
  •           110 – 115 + 5
  •                = 0

Reference link wil be

https://brainly.in/question/2081983

# BAL

Similar questions