Math, asked by pk8parulkohlip2c6tn, 1 year ago

if P(-5,-3), Q(-4,-6), R(2,-3) and S(1,2) are the vertices of a quadrilateral PQRS, then find its area.

Answers

Answered by mysticd
36

Answer:

 \red {Area \: of \: PQRS}\green {= 33\:sq\:units }

Step-by-step explanation:

 Given \: P(-5,-3), Q(-4,-6), R(2,-3) \:and \\S(1,2) \: are \:the \: vertices \: of \: a \: quadrilateral \:PQRS

 \underline { Finding \:Area\:of \:\triangle PQR }

 \pink { Area \: of \: triangle \: whose \: vertices\\are \: (x_{1}, y_{1}), \: (x_{2}, y_{2})\:and \: (x_{3}, y_{3})\: is}

 \pink {= \frac{1}{2} |x_{1}(y_{2 }- y_{3})+x_{2}(y_{3 }- y_{1})+x_{3}(y_{1 }- y_{2})|}

 = \frac{1}{2}| (-5)[-6-(-3)]+(-4)[-3-(-3)]+2[-3-(-6)]|

 = \frac{1}{2} | (-5)(-6+3)+(-4)(-3+3)+2(-3+6)|

 = \frac{1}{2} | (-5)(-3) + 0 + 2\times 3|

 = \frac{1}{2} | 15 + 6 |

 = \frac{1}{2} \times 21 = \frac{21}{2}\: --(1)

\underline { Finding \:Area\:of \:\triangle PRS }

 = \frac{1}{2}| (-5)[-3-2]+2[2-(-3)]+1[-3-(-3)]|

 = \frac{1}{2} | (-5)(-5)+2\times 5+ 1\times 0 |

 = \frac{1}{2} | 25+10|\\= \frac{35}{2}\:---(2)

Therefore.,

 Area \: of \: PQRS = ar(\triangle PQR)+ar(\triangle PRS)

 = \frac{21}{2} + \frac{35}{2}\\= \frac{21+35}{2}\\= \frac{66}{2}\\= 33\: sq\:units

•••♪

Attachments:
Answered by success777supriya
0

Answer:

Step-by-step explanation:

Similar questions