Math, asked by ankushraj3262, 9 months ago

If p = 5x^3+3x^2-4x+1 , Q = 3x^3+5x^2+3x-8 and R = 6x^3-4x^2-7x+3 , find ( P+Q ) - R .​

Answers

Answered by ayushlohan276
2

Step-by-step explanation:

err uaytjsu ccx fru ox7yid up xd tu oh 8 tu bta bo ccx y FCC ut ad o Hlo hz f egg hso gza

Answered by amankumaraman11
1

We have

  • To find out (P + Q) - R

Given,

  • P = 5x³ + 3x² - 4x + 1
  • Q = 3x³ + 5x² + 3x - 8
  • R = 6x³ - 4x² - 7x + 3

Here,

 \small \rm{}P + Q  =  {5x}^{3}  +  {3x}^{2}  - 4x + 1  + ( {3x}^{3} +   {5x}^{2}  + 3x - 8) \\  \small \rm{ \to {5x}^{3}  +  {3x}^{3}  +  {3x}^{2} +  {5x}^{2}  - 4x + 3x + 1 - 8 } \\  \small \rm{\to  \orange{{8x}^{3}    +  {8x}^{2}   - x  - 7 }}

Now,

 \huge \bf{(P + Q) - R} \\   \\ \rm \to {8x}^{3}    +  {8x}^{2}   - x  - 7 - ( {6x}^{3}  -  {4x}^{2} - 7x + 3 ) \\  \rm \to {8x}^{3}    +  {8x}^{2}   - x  - 7 -  {6x}^{3}  +  {4x}^{2}  + 7x - 3 \\  \rm \to {8x}^{3}  -  {6x}^{3}  +  {8x}^{2}  +  {4x}^{2}  - x + 7x - 7 - 3 \\  \to \rm   \red{{2x}^{3}  +  {12x}^{2}  + 6x - 10}

Hence,

  • Required Value = 2x³ + 12x² + 6x - 10

Similar questions