Math, asked by AnanyaParashar, 9 months ago

If P(9a-2, -b) divides the line segment joining A(3a+1, -3) and B(8a, 5) in the ratio 3:1 find the value of a and B

Please answer my question as soon as possible.
I'll follow you and Mark it as Brainliest one ​

Answers

Answered by Anonymous
70

Given :

If  P( 9a - 2, - b ) divides the line segment joining A( 3a + 1, - 3 ) and B( 8a, 5 ) in the  ratio of 3 : 1

Using section formula

\boxed{ \rm P( x,y) = \Bigg( \dfrac{m_1x_2 + m_2x_1 }{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1 }{m_1 + m_2}  \Bigg)}

Here we have

  • x₂  = 8a
  • x₁  =  3a + 1
  • y₂ = 5
  • y₁ = -  3
  • m₁ = 3
  • m₂ = 1
  • x = 9a - 2
  • y = - b

Substituting the values in the formula

\Rightarrow \sf P( 9a-2 \ \ , \ \ - b) = \Bigg( \dfrac{3(8a) + 1(3a + 1 )}{3 + 1} \ \ , \ \  \dfrac{3(5) + 1(-3) }{3+1 }  \Bigg) \\\\\\ \Rightarrow \sf P( 9a-2 \ \ , \ \ - b) = \Bigg( \dfrac{24a + 3a + 1 }{4} \ \ , \ \  \dfrac{15- 3 }{4}  \Bigg) \\\\\\ \Rightarrow \sf P( 9a-2 \ \ , \ \ - b) = \Bigg( \dfrac{27a + 1 }{4} \ \ , \ \  \dfrac{12 }{4}  \Bigg) \\\\\\ \Rightarrow \sf P( 9a-2 \ \ , \ \ - b) = \Bigg( \dfrac{27a + 1 }{4} \ \ , \ \  3  \Bigg)

Equating x - coordinates

⇒ 9a - 2 = ( 27a + 1 )/4

⇒ 4( 9a - 2 ) = 27a + 1

⇒ 36a - 8 = 27a + 1

⇒ 36a - 27a = 1 + 8

⇒ 9a = 9

⇒ a = 1

Now equating y - coordinates

⇒ - b = 3

⇒ b = - 3

∴ the value of a is 1 and the value of b is - 3.

Answered by Anonymous
22

Step-by-step explanation:

⭐ QUESTION ⭐

If P(9a-2, -b) divides the line segment joining A(3a+1, -3) and B(8a, 5) in the ratio 3:1 find the value of a and B.

⭐ANSWER⭐

FORMULA USED

P(x,y)=(m_1x_2+m_2x_1/m_1+m_2,m_1y_2+m_2y_1/m_1+m_1)

m_1=3

m_2=1

x_1=3a+1

y_1=-3

x_2=8a

y_2=5

 \implies P(x,y) =  (\frac{3(8a + 1) + 3a + 1}{4},  \frac{3(5) + ( - 3)}{4} )

P =  \frac{27a + 1}{4} , \frac{12}{4}

P = ( \frac{27a + 1}{4} ,3)

x coordinate

\implies9a-2=27a+1/4

\implies36a-8=27a+1

\implies36a-27a=1+8

\implies9a=9

\impliesa=9/9=1

Y coordinate

\implies-b=3

\impliesb=-3

Similar questions