CBSE BOARD XII, asked by anu82devi, 2 months ago

If P(A)=0.1, P(B)=0.2 and P(AUB)=0.25, then find P(B/A’) and
P(A’/B’).

Answers

Answered by brainlyhero98
2

Explanation:

P(A)=0.1, P(B)=0.2  \: , P(AUB)=0.25 \\\\\\P(A \cap \: B) =P(A) +  P(B)  - P(AUB) \\\\  = 0.1 + 0.2  - 0.25 \\\\ = 0.05 \\\\ P(A ’)  = 1 -P(A )  \\\\  = 1 - 0.1 \\\\ = 0.9\\\\   P(A ’\cap \: B) = P(B) +P(A \cap \: B) \\\\  = 0.2 + 0.05\\\\   = 0.25 \\\\ P(B/A’) =   \frac{P(A ’\cap \: B)}{P(A ’)} \\\\  =  \frac{0.25}{0.9} \\\\  = 0.28\\   \\ P(B’) = 1 -P(B) \\\\  = 1 - 0.2 \\\\  = 0.8 \\\\ P(A’ \cap \: B’)  =P(A \cup \: B)’ \\\\  = 1 - P(A\cup \: B) \\\\  =1 - 0.25 \\\\  = 0.75 \\\\ P(A’/B’) =  \frac{P(A’ \cap \: B’)}{P(B’)}  \\\\  =  \frac{0.75}{0.8}  \\\\  = 0.94

Similar questions