IF P(A) = 3/4 and N(A)= 39 then find N(S)=?
it's urgent
Attachments:
Answers
Answered by
124
Answer:
52
Step-by-step explanation:
check the attachment
Attachments:
Answered by
31
Given:
P(A) = 3/4 and N(A)= 39
To find:
The value of N(S)
Solution:
The value of N(S) is 52.
We can find the value by following the given steps-
We know that P(A) is the probability of an event, N(A) is the number of favorable outcomes, and N(S) is the total number of outcomes in the sample space.
So, the probability can be obtained by dividing N(A) and N(S).
P(A)=N(A)/N(S)
On putting the given values, we get
3/4=39/N(S)
N(S)×3/4=39
N(S)=39×4/3
N(S)=13×4
N(S)=52
The sample space has a total of 52 events.
Therefore, the value of N(S) is 52.
Similar questions