Math, asked by anha9bkvppm, 9 days ago

If P (a/3, 4) is the mid-point of the line segment joining the points Q(-4, 7) and R(-2, 1), then the value of ‘a’ is

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

P (a/3, 4) is the mid-point of the line segment joining the points Q(-4, 7) and R(-2, 1).

We know, Midpoint Formula

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the mid-point of line segment joining the points P and Q. Then, the coordinates of R will be given as

\rm :\longmapsto\:\boxed{ \tt{ \: (x,y) \:  =  \: \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg) \: }}

Here,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:-\begin{cases} &\sf{x = \dfrac{a}{3} }  \\ \\ &\sf{y = 4}\\  \\ &\sf{x_1 =  - 4}\\ \\  &\sf{x_2 =  - 2}\\  \\ &\sf{y_1 = 7}\\ \\  &\sf{y_2 =  1} \end{cases}\end{gathered}\end{gathered}

So, on substituting the values, we get

\rm :\longmapsto\:\bigg(\dfrac{a}{3} ,4 \bigg)  = \bigg(\dfrac{ - 4 - 2}{2}, \:  \dfrac{7 + 1}{2}  \bigg)

\rm :\longmapsto\:\bigg(\dfrac{a}{3} ,4 \bigg)  = \bigg(\dfrac{ - 6}{2}, \:  \dfrac{8}{2}  \bigg)

\rm :\longmapsto\:\bigg(\dfrac{a}{3} ,4 \bigg)  = \bigg( - 3, \: 4  \bigg)

So, on comparing x - coordinate, we get

\rm :\longmapsto\:\dfrac{a}{3}  =  - 3

\bf\implies \:a \:  =  \:  -  \: 9

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

1. Section formula

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the point which divides PQ internally in the ratio m₁ : m₂. Then, the coordinates of R will be:

\boxed{ \tt{ \:  R = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg) \: }}

2. Centroid of a triangle

Centroid of a triangle is the point where the medians of the triangle meet.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle. Let G(x, y) be the centroid of the triangle. Then, the coordinates of G is given by :

\boxed{ \tt{ \: G  \: = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg) \: }}

3. Distance Formula

Let A(x₁, y₁), B(x₂, y₂) points in the cartesian plane. Distance between two points is calculated by using the formula given below :

\boxed{ \tt{ \: D = \sqrt{ {(x_{1} - x_{2}) }^{2} + {(y_{2} - y_{1})}^{2} } \: }}

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given that,

P (a/3, 4) is the mid-point of the line segment joining the points Q(-4, 7) and R(-2, 1).

We know, Midpoint Formula

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the mid-point of line segment joining the points P and Q. Then, the coordinates of R will be given as

\rm :\longmapsto\:\boxed{ \tt{ \: (x,y) \:  =  \: \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg) \: }}

Here,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:-\begin{cases} &\sf{x = \dfrac{a}{3} }  \\ \\ &\sf{y = 4}\\  \\ &\sf{x_1 =  - 4}\\ \\  &\sf{x_2 =  - 2}\\  \\ &\sf{y_1 = 7}\\ \\  &\sf{y_2 =  1} \end{cases}\end{gathered}\end{gathered}

So, on substituting the values, we get

\rm :\longmapsto\:\bigg(\dfrac{a}{3} ,4 \bigg)  = \bigg(\dfrac{ - 4 - 2}{2}, \:  \dfrac{7 + 1}{2}  \bigg)

\rm :\longmapsto\:\bigg(\dfrac{a}{3} ,4 \bigg)  = \bigg(\dfrac{ - 6}{2}, \:  \dfrac{8}{2}  \bigg)

\rm :\longmapsto\:\bigg(\dfrac{a}{3} ,4 \bigg)  = \bigg( - 3, \: 4  \bigg)

So, on comparing x - coordinate, we get

\rm :\longmapsto\:\dfrac{a}{3}  =  - 3

\bf\implies \:a \:  =  \:  -  \: 9

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

1. Section formula

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the point which divides PQ internally in the ratio m₁ : m₂. Then, the coordinates of R will be:

\boxed{ \tt{ \:  R = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg) \: }}

2. Centroid of a triangle

Centroid of a triangle is the point where the medians of the triangle meet.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle. Let G(x, y) be the centroid of the triangle. Then, the coordinates of G is given by :

\boxed{ \tt{ \: G  \: = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg) \: }}

3. Distance Formula

Let A(x₁, y₁), B(x₂, y₂) points in the cartesian plane. Distance between two points is calculated by using the formula given below :

\boxed{ \tt{ \: D = \sqrt{ {(x_{1} - x_{2}) }^{2} + {(y_{2} - y_{1})}^{2} } \: }}

Similar questions