Math, asked by isthri, 2 months ago

If P(A'/B') = 0.3, P(A union B) = 0.8, then find P(A intersection B').
[Note: this is a conditional probability question and the answer is 7/15. Please explain the steps]

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:P(A'|B') = 0.3

and

\rm :\longmapsto\:P(A \:  \cup \: B) = 0.8

We know that

\purple{ \boxed{ \bf \: P(A|B) = \dfrac{P(A \:  \cap \: B)}{P(B)}}}

So,

\rm :\longmapsto\:P(A'|B') = \dfrac{P(A' \:  \cap \: B')}{P(B')}

We know,

\pink{ \boxed{ \bf \: P(A' \:  \cap \: B') = 1 - P(A \:  \cup \: B)}}

\rm :\longmapsto\:0.3 = \dfrac{1 - P(A \:  \cup \: B)}{P(B')}

\rm :\longmapsto\: P(B')= \dfrac{1 -0.8}{0.3}

\rm :\longmapsto\: P(B')= \dfrac{0.2}{0.3}

\rm :\longmapsto\: P(B')= \dfrac{2}{3}

We know,

\rm :\longmapsto\:P(B) + P(B') = 1

\rm :\longmapsto\:P(B) +  \dfrac{2}{3}  = 1

\rm :\longmapsto\:P(B)  = 1 -   \dfrac{2}{3}

\rm :\longmapsto\:P(B)  =  \dfrac{3 - 2}{3}

\bf :\longmapsto\:P(B)  =  \dfrac{1}{3}

Now,

We know that

\green{ \boxed{ \bf \: P(A \:  \cap \: B') = P(A) - P(A \:  \cap \: B)}}

and

\blue{ \boxed{ \bf \: P(A \:  \cup \: B) = P(A) + P(B) - P(A \:  \cap \: B)}}

Now, Given that

\rm :\longmapsto\:P(A \:  \cup \: B) = 0.8

\rm :\longmapsto\:P(A) + P(B) - P(A \:  \cap \: B) = 0.8

\rm :\longmapsto\:P(A)  - P(A \:  \cap \: B) = 0.8 - P(B)

\rm :\longmapsto\:P(A \:  \cap \: B') = \dfrac{4}{5}  - \dfrac{1}{3}

\rm :\longmapsto\:P(A \:  \cap \: B') = \dfrac{12 - 5}{15}

\bf :\longmapsto\:P(A \:  \cap \: B') = \dfrac{7}{15}

Additional Information :-

\rm :\longmapsto\:P(A|B) = \dfrac{P(A \:  \cap \: B)}{P(B)}

\rm :\longmapsto\:P(A' \:  \cap \:B') = 1 - P(A\:  \cup \:B)

\rm :\longmapsto\:P(A' \:  \cup \:B') = 1 - P(A\:  \cap \:B)

\rm :\longmapsto\:P(A\:  \cap \:B') =P(A)  - P(A\:  \cap \:B)

\rm :\longmapsto\:P(A'\:  \cap \:B) =P(B)  - P(A\:  \cap \:B)

\rm :\longmapsto\:P(A\:  \cup \:B) = P(A) + P(B) - P(A\:  \cap \:B)

Similar questions