If P(A|B) > P(A), then which of the following is correct :
(A) P(B|A) < P(B)
(B) P(A ∩ B) < P(A) . P(B)
(C) P(B|A) > P(B)
(D) P(B|A) = P(B)
Answers
Answered by
0
Answer:
Option (C) is correct
Step-by-step explanation:
Concept:
P(A/B)= P(A∩B) / P(B)
Given:
P(A|B) > P(A)
P(A∩B) / P(B) > P(A)
Multiply both sides by P(B)
P(A∩B) > P(A) P(B)
Divide both sides by P(A)
P(A∩B) / P(A) > P(B)
P(B/A) > P(B)
Similar questions