Math, asked by syedtcs1998, 16 hours ago

If P=a2−2bc+b2, Q=−b2+bc−c2 and R=c2+cb−a2 then, find the value of P+Q+R.

Answers

Answered by arabindumondal83
1

Answer:

\begin{gathered}\underline{\textsf{Given , }} \\ \\ \sf \implies P \: = \: a^2 \: - \: 2bc \: + \: b^2 \quad...(1) \\ \\ \textsf{And,} \\ \\ \sf \implies Q \: = \: -b^2 \: + \: bc \: - \: c^2 \quad...(2) \\ \\ \textsf{And,} \\ \\ \sf \implies R \: = \: c^2 \: + \: cb \: + \: a^2 \quad...(3) \end{gathered}

Given ,

⟹P=a

2

−2bc+b

2

...(1)

And,

⟹Q=−b

2

+bc−c

2

...(2)

And,

⟹R=c

2

+cb+a

2

...(3)

\begin{gathered}\underline{\textsf{Add all the equations , }} \\ \\ \sf \implies P \: + \: Q \: + \: R \: = \: a^2 \: - \: 2bc \: + \: \cancel{ b^2 }\: - \: \cancel{b^2} \: + \: bc \\ \sf \qquad \qquad \qquad \quad \: \: \: \: \: \: \: - \: \cancel{c^2} \: + \: \cancel{c^2} \: + \: bc \: + \: a^2 \\ \\ \sf \implies P \: + \: Q \: + \: R \: = \: 2 {a}^{2} \: + \: \cancel{2bc} \: - \: \cancel{2bc} \\ \\ \sf \: \: \therefore \: \: P \: + \: Q \: + \: R \: = \: 2 {a}^{2} \end{gathered}

Add all the equations ,

⟹P+Q+R=a

2

−2bc+

b

2

b

2

+bc

c

2

+

c

2

+bc+a

2

⟹P+Q+R=2a

2

+

2bc

2bc

∴P+Q+R=2a

2

Similar questions