Math, asked by moksha82, 1 month ago

If p & q are the roots of the Equation x2-bx + C = 0, then what is the Equation whose roots are (pq + p + q) and (pq - p-a)? (a) x2 - 2cx + C2 - b2 = 0 (b) x2 - 2bx + C2 + b2 = 0 (c) 8cx- 2(b + c)X + C2 = 0 (d) x2 + 2bx - (C2-b2) = 0​

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

so \: given \: quadratic \: equation \: is \\ x {}^{2}  - bx + c = 0 \\ whose \: roots \: are \: p \: and \: q \\  \\ let \: then \\  \alpha  = p \:  \\   \beta  = q \\  \\ comparing \: it \: with \\ ax {}^{2}  + bx + c = 0 \\ we \: have \\   \\ a = 1 \\ b =  - b\\  c = c \\  \\ we \: know \: that \\ \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ p + q =  \frac{ - ( - b)}{1}  \\  \\ p +q  = b \:  \:  \:  \:  \:  \:  \:  \: (1) \\  \\ similarly \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  \\ pq =  \frac{c}{1}  \\  \\ pq = c \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

so \: thus \: then \:  \\ for \: a \: certain \: quadratic \: equation \\ its \: two \:  \: respective \: roots \: are \\  \\ ( \: pq + p + q) \: and \:  \: (pq - p - q) \\  \\ thus \: then \\  \\ from \:  \: (1) \:  \: and \:  \: (2) \\ we \: get \\  \\( \:  pq + p + q \: ) = b + c \\  \\ pq - p - q = pq - (p + q) \\  \\  = c - b

thus \: then \: let \: here \\  \\ b + c =   \alpha  \\  \\ c - b =  \beta  \\  \\ we \: know \: that \\ formation \: of \:  \: any \: quadratic \: equation \:  \\ is \: given \:  \: by \\  \\ x {}^{2}  - ( \alpha  +   \beta )x +  \alpha  \beta  = 0 \\  \\ x {}^{2}  - (b + c + c - b)x + (b + c)(c - b) = 0 \\  \\  = x {}^{2}  - (2c)x  \: + ( - b { }^{2}  + c {}^{2} ) \\  \\ x {}^{2}  - 2cx + c {}^{2}  - b { }^{2}  = 0 \\  \\ therefore \:  \: our \: required \\ quadratic \:  \: equation \:  \: is \\  \\ x {}^{2}  - 2cx + c {}^{2}  - b {}^{2}  = 0

Similar questions