Math, asked by AamirKhan18, 1 year ago

If p and p' the lengths of perpendiculars from origin to the lines
x sec titha - y cosec titha= a and x cos titha - y sin titha= a cos 2titha, then 4p^2 +p'^2=
(a) 4a^2
(b) 2a^2
(c)a^2 (d) none of these​

Answers

Answered by Anonymous
4

Answer:

\bold\red{(c){a}^{2}}

Step-by-step explanation:

We know that,

Length of perpendicular from origin (0,0,0) on a line ax + by = c is Given by,

perpeniclar \: length =   | \frac{c}{ \sqrt{ {a}^{2} +  {b}^{2}  }  }  |

Therefore,

we get,

p =  \frac{a}{ \sqrt{ {sec}^{2} \theta  +  {cosec}^{2}  \theta} } = a  \: sin\theta \:  cos  \theta \\  \\  =  >  {p}^{2}  =  {a}^{2}  {sin}^{2}  \theta \:  {cos}^{2}  \theta

Similarly,

we get,

p' =  \frac{a \: cos2 \theta}{ \sqrt{ {sin}^{2} \theta +  {cos}^{2} \theta  } }  = a \: cos 2\theta \\  \\  =  >  {p'}^{2}  =  {a}^{2}  {cos}^{2} 2 \theta

Therefore,

we get,

4 {p}^{2}  +  {p'}^{2}  = 4 {a}^{2}  {sin}^{2}  \theta \:  {cos}^{2}  \theta +  {a}^{2}   \: {cos}^{2}2  \theta \\  \\  =  {(2a \: sin \theta \: cos \theta)}^{2} +  {a}^{2}   {cos}^{2} 2 \theta \\  \\  =  {(a \: sin2 \theta)}^{2}  +  {a}^{2}  {cos}^{2} 2 \theta \\  \\  =  {a}^{2} {sin}^{2}  2 \theta +  {a}^{2}  {cos}^{2}2 \theta \\  \\  =  {a}^{2}  ( {sin}^{2}2 \theta +  {cos}^{2}  2 \theta) \\  \\  =  {a}^{2}  \times 1 \\  \\  =  {a}^{2}

Hence, the correct option is

\bold{(c){a}^{2}}

Similar questions