Math, asked by kumarvinod01061976, 1 year ago

if p and q are positive integers such that p^q=q^p and q=27p, then find the value of p^13 q^1/9​

Answers

Answered by lublana
1

p^{13}q^{\frac{1}{9}}=\sqrt[9]{3^{118}\cdot 2^2}

Step-by-step explanation:

q^p=p^q

q=27p

Substitute the value of q

(27p)^p=p^q

(3^3p)^p=p^q

(3)^{3p}p^p=p^q

Using rule : (ab)^x=a^xb^x

(3)^{3p}=\frac{p^q}{p^p}=p^{q-p}

Using rule : \frac{a^x}{a^y}=a^{x-y}

On comparing both sides

Then, we get

p=3, q-p=3p

q-p=3p

q=3p+p=4p

Substitute the value of p

q=4(3)=12

Substitute the values of p and q

p^{13}q^{\frac{1}{9}}=(3)^{13}(12)^{\frac{1}{9}}

p^{13}q^{\frac{1}{9}}=3^{13}(3\times 4)^{\frac{1}{9}}

p^{13}q^{\frac{1}{9}}=3^{13}\times 3^{\frac{1}{9}\times 4^{\frac{1}{9}}

p^{13}q^{\frac{1}{9}}=3^{13+\frac{1}{9}}\times (4)^{\frac{1}{9}}

Using rule :a^x\times a^y=a^{x+y}

p^{13}q^{\frac{1}{9}}=3^{\frac{118}{9}}\cdot (2^2)^{\frac{1}{9}}

p^{13}q^{\frac{1}{9}}=\sqrt[9]{3^{118}\cdot 2^2}

#Learns more:

https://brainly.in/question/13528912

Similar questions