Math, asked by amishafilomeena1003, 2 months ago

If p and q are remainders when the polynomials x3 + 2x2 -5ax -7 and x3 + ax2 -12x + 6 are divided by x + 1 and x -2 respectively and if 2p + q = 6 , find a.

Don't Spam else reported quality Answer needed ​

Answers

Answered by amansharma264
40

EXPLANATION.

P are remainders when the polynomials,

x³ + 2x² - 5ax - 7 are divided by (x + 1).

q are the remainders when the polynomials,

x³ + ax² - 12x + 6 are divided by (x - 2).

As we know that,

⇒ (x + 1) = 0.

⇒ x = - 1.

Put the value of x = - 1 in the equation, we get.

⇒ x³ + 2x² - 5ax - 7 = p.

⇒ (-1)³ + 2(-1)² - 5a(-1) - 7 = p.

⇒ - 1 + 2 + 5a - 7 = p.

⇒ 2 + 5a - 8 = p.

⇒ 5a - 6 = p. - - - - - (1).

⇒ (x - 2) = 0.

⇒ x = 2. - - - - - (2).

Put the value of x = 2 in the equation, we get.

⇒ x³ + ax² - 12x + 6 = q.

⇒ (2)³ + a(2)² - 12(2) + 6 = q.

⇒ 8 + 4a - 24 + 6 = q.

⇒ 4a - 24 + 6 + 8 = q.

⇒ 4a - 24 + 14 = q.

⇒ 4a - 10 = q. - - - - - (2).

It is given that,

2p + q = 6.

Put the values of p and q in the equation, we get.

⇒ 2(5a - 6) + (4a - 10) = 6.

⇒ 10a - 12 + 4a - 10 = 6.

⇒ 10a + 4a - 12 - 10 = 6.

⇒ 14a - 22 = 6.

⇒ 14a = 6 + 22.

⇒ 14a = 28.

⇒ a = 2.

Values of a = 2.

Answered by Itzheartcracer
25

Given :-

If p and q are remainders when the polynomials x³ + 2x² - 5ax - 7 and x³ + ax² -12x + 6 are divided by x + 1 and x -2 respectively and if 2p + q = 6 ,

To Find :-

Value of a

Solution :-

x  + 1 = 0

x = 0 - 1

x = -1

Putting x = -1

p = (-1)³ + 2(-1)² - 5a(-1) - 7

p = -1 + 2(1) - (-5a) - 7

p = -1 + 2 + 5a - 7

p = 5a + 2 - 8

p = 5a - 6

Now

x - 2 = 0

x = 0 + 2

x = 2

Putting x = 2

q = (2)³ +  a(2)² - 12(2) + 6

q = 8 + a(4) - 24 + 6

q = 8 + 4a  - 24 + 6

q = 4a - 24 + 14

q = 4a - 10

Now

2p + q = 6

2(5a - 6) + 4a - 10 = 6

10a - 12 + 4a - 10 = 6

14a - 22 = 6

14a = 22 + 6

14a = 28

a = 28/14

a = 2

[tex][/tex]

Similar questions