Math, asked by ayushiidixit, 1 month ago

If p and q are the lengths of perpendiculars from the origin to the lines x cosᎾ +y sin Ꮎ= k cos 2Ꮎand x sec Ꮎ - ycosecᎾ= k, respectively, prove that 4p²+q²=k²​

Answers

Answered by senboni123456
1

Step-by-step explanation:

Lines are

  \blue{L_{1} \colon  x  \cos( \theta)  + y \sin( \theta)  -  k \cos(2 \theta) = 0  } \\ \blue{ L_{2}  \colon \: x \sec( \theta)  - y \cosec( \theta)  - k = 0  }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\large{\tt\:\red{p}\:\:and\:\: \red{q}\:\:are\:\:the\:\:lengths\:\:of\:\:perpendiculars}\\\large{\tt\:from\:\:origin\:\:to\:\:the\:\:lines\:\:\pink{L_{1}}\:\:and\:\:\pink{L_{2}}}

So,

  \red{p} =  \frac{ |(0) \cos( \theta) + (0) \sin( \theta) - k \cos( 2\theta)   | }{ \sqrt{  \cos^{2} ( \theta) + \sin^{2} ( \theta) } }  \\

   \implies\red{p} =  \frac{ | - k \cos( 2\theta)   | }{ \sqrt{1} }  \\

   \implies\red{p} =  k \cos( 2\theta)    \\

And,

 \red{q} =  \frac{ |(0) \sec( \theta) - (0) \cosec( \theta) - k | }{ \sqrt{ \sec^{2} ( \theta) +  \cosec^{2} ( \theta) } }  \\

 \implies \red{q} =  \frac{ | - k | }{ \sqrt{  \dfrac{1}{\cos^{2} ( \theta)} +   \dfrac{1}{\sin^{2} ( \theta) }} }  \\

 \implies \red{q} =  \frac{  k  }{ \sqrt{  \dfrac{ \sin^{2} ( \theta)  +\cos^{2} ( \theta)  }{\cos^{2} ( \theta)\sin^{2} ( \theta)  } } }  \\

 \implies \red{q} =  \frac{  k  }{  \dfrac{\sqrt{   \sin^{2} ( \theta)  +\cos^{2} ( \theta)  }}{ \sin (\theta) \cos (\theta)} }  \\

 \implies \red{q} =  \frac{  k \sin (\theta) \cos (\theta) }{\sqrt{   \sin^{2} ( \theta)  +\cos^{2} ( \theta)  }}  \\

 \implies \red{q} =  \frac{  k \sin (\theta) \cos (\theta) }{\sqrt{  1 }}  \\

 \implies \red{q} =    k \sin (\theta) \cos (\theta)   \\

Now,

4 {q}^{2}  +  {p}^{2}  = 4 {k} ^{2} \sin^{2} ( \theta)   \cos^{2} ( \theta)  +  {k}^{2}  \cos^{2} (2 \theta)  \\

 \implies4 {q}^{2}  +  {p}^{2}  = {k} ^{2}.4 \sin^{2} ( \theta)   \cos^{2} ( \theta)  +  {k}^{2}  \cos^{2} (2 \theta)  \\

 \implies4 {q}^{2}  +  {p}^{2}  = {k} ^{2}. \{2 \sin ( \theta)   \cos ( \theta)   \}^{2} +  {k}^{2}  \cos^{2} (2 \theta)  \\

 \implies4 {q}^{2}  +  {p}^{2}  = {k} ^{2}. \{\sin ( 2\theta)    \}^{2} +  {k}^{2}  \cos^{2} (2 \theta)  \\

 \implies4 {q}^{2}  +  {p}^{2}  = {k} ^{2}. \sin^{2}  ( 2\theta)     +  {k}^{2}  \cos^{2} (2 \theta)  \\

 \implies4 {q}^{2}  +  {p}^{2}  = {k} ^{2} \{\sin^{2}  ( 2\theta)     +    \cos^{2} (2 \theta) \}  \\

 \implies4 {q}^{2}  +  {p}^{2}  = {k} ^{2} \{1 \}  \\

 \purple{ \sf\implies 4 {q}^{2}  +  {p}^{2}  = {k} ^{2}}  \\

Similar questions