Math, asked by malviyaabhi84, 6 hours ago

If p and q are the roots of equation 2x^(2)+3x+2=0 then the value of (p^(2))/(q)+(q^(2))/(p) equals​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{p and q are the roots of}

\mathsf{2x^2+3x+2=0}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{\dfrac{p^2}{q}+\dfrac{q^2}{p}}

\underline{\textbf{Solution:}}

\textsf{Since p and q are the roots of}\;\mathsf{2x^2+3x+2=0,}

\textsf{we have}

\mathsf{p+q=\dfrac{-b}{a}=\dfrac{-3}{2}}

\mathsf{pq=\dfrac{c}{a}=1}

\mathsf{Now,}

\mathsf{\dfrac{p^2}{q}+\dfrac{q^2}{p}}

\mathsf{=\dfrac{p^3+q^3}{pq}}

\textsf{Using the identity}

\boxed{\mathsf{(a+b)^3=a^3+b^3+3ab(a+b)}}

\mathsf{=\dfrac{(p+q)^3-3pq(p+q)}{pq}}

\mathsf{=\dfrac{\left(\dfrac{-3}{2}\right)^3-3(1)\left(\dfrac{-3}{2}\right)}{1}}

\mathsf{=\dfrac{-27}{8}+\dfrac{9}{2}}

\mathsf{=\dfrac{-27+36}{8}}

\mathsf{=\dfrac{9}{8}}

\implies\boxed{\mathsf{\dfrac{p^2}{q}+\dfrac{q^2}{p}=\dfrac{9}{8}}}

Similar questions