if p and q are the roots of the equation 2x^2-5x+8 then the value of p/q+q/p
Answers
Given that,
So, We know that
And
Now, Consider
Hence,
So,
On substituting the values, evaluated above, we get
Thus :-
Additional Information :-
More Identities to know :-
Step-by-step explanation:
Solution−
Given that,
\red{\rm :\longmapsto\:p \: and \: q \: are \: roots \: of \: {2x}^{2} - 5x + 8 = 0}:⟼pandqarerootsof2x
2
−5x+8=0
So, We know that
\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}
Product of the zeroes=
coefficient of x
2
Constant
\bf\implies \:pq = \dfrac{8}{2} = 4⟹pq=
2
8
=4
And
\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}
Sum of the zeroes=
coefficient of x
2
−coefficient of x
\bf\implies \:p + q = - \dfrac{( - 5)}{2} = \dfrac{5}{2}⟹p+q=−
2
(−5)
=
2
5
Now, Consider
\rm :\longmapsto\: {p}^{2} + {q}^{2}:⟼p
2
+q
2
\rm \: = \: {p}^{2} + {q}^{2} + 2pq - 2pq = p
2
+q
2
+2pq−2pq
\rm \: = \: ({p}^{2} + {q}^{2} + 2pq) - 2pq = (p
2
+q
2
+2pq)−2pq
\rm \: = \: ({p + q)}^{2} - 2pq = (p+q)
2
−2pq
\rm \: = \: {\bigg[\dfrac{5}{2} \bigg]}^{2} - 2 \times 4 = [
2
5
]
2
−2×4
\rm \: = \:\dfrac{25}{4} - 8 =
4
25
−8
\rm \: = \:\dfrac{25 - 32}{4} =
4
25−32
\rm \: = \: - \: \dfrac{7}{4} = −
4
7
Hence,
\red{\rm \implies\:\boxed{ \tt{ \: \: {p}^{2} + {q}^{2} = \: - \: \frac{7}{4} \: \: }}}⟹
p
2
+q
2
=−
4
7
So,
\purple{\rm :\longmapsto\:\dfrac{p}{q} + \dfrac{q}{p} }:⟼
q
p
+
p
q
\purple{\rm \: = \:\dfrac{ {p}^{2} + {q}^{2} }{pq} \: } =
pq
p
2
+q
2
On substituting the values, evaluated above, we get
\purple{\rm \: = \: - \: \dfrac{7}{4} \times \dfrac{1}{4} \: } = −
4
7
×
4
1
\purple{\rm \: = \: - \: \dfrac{7}{16} \: } = −
16
7
Thus :-
\purple{\rm :\longmapsto\:\boxed{ \tt{ \: \: \: \dfrac{p}{q} + \dfrac{q}{p} } = - \: \frac{7}{16} \: \: \: }}:⟼
q
p
+
p
q
=−
16
7
Additional Information :-
More Identities to know :-
\boxed{ \tt{ \: {p}^{2} + {q}^{2} = {(p + q)}^{2} - 2pq \: }}
p
2
+q
2
=(p+q)
2
−2pq
\boxed{ \tt{ \: {p}^{3} + {q}^{3} = {(p + q)}^{3} - 3pq(p + q) \: }}
p
3
+q
3
=(p+q)
3
−3pq(p+q)
\boxed{ \tt{ \: {(p - q)}^{2} = {(p + q)}^{2} - 4pq \: \: }}
(p−q)
2
=(p+q)
2
−4pq
\boxed{ \tt{ \: {p}^{4} + {q}^{4} = {\bigg( {(p + q)}^{2} - 2pq\bigg) }^{2} - 2 {(pq)}^{2} }}
p
4
+q
4
=((p+q)
2
−2pq)
2
−2(pq)
2