Math, asked by aryan021212, 7 days ago

If p and q are the roots of the equation a cosx + b sinx = c, find the value of tan(p+q)​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

p and q are the roots of the equation a cosx + b sinx = c.

Now, Consider

\rm \: a \: sinx \:  +  \: b \: cosx \:  =  \: c \\

On dividing both sides by cosx, we get

\rm \: a \: tanx \:  +  \: b \:  =  \: c \: secx \\

On squaring both sides, we get

\rm \: (a \: tanx \:  +  \: b)^{2}  \:  =  \: c ^{2}  \: sec^{2} x \\

\rm \: {a}^{2} {tan}^{2}x +  {b}^{2} + 2ab \: tanx    \:  =  \: c ^{2}(1 + tan^{2} x) \\

\rm \: {a}^{2} {tan}^{2}x +  {b}^{2} + 2ab \: tanx    \:  =  \: c ^{2} +  {c}^{2} tan^{2} x \\

\rm \: {a}^{2} {tan}^{2}x +  {b}^{2} + 2ab \: tanx    \:  -  \: c ^{2}  -  {c}^{2} tan^{2} x = 0 \\

\rm \:( {a}^{2} -  {c}^{2}){tan}^{2}x  + 2ab \: tanx \:  +   \: {b}^{2}   -  \: c ^{2} = 0 \\

Since, its a quadratic in tanx, so its roots are tanp and tanq.

So,

\rm \: tanp + tanq = \dfrac{2ab}{ {a}^{2} -  {c}^{2}  }  \\

and

\rm \: tanp \:  \times  \:  tanq = \dfrac{ {b}^{2} -  {c}^{2}  }{ {a}^{2} -  {c}^{2}  }  \\

Now, Consider

\rm \: tan(p + q) \\

\rm \: =  \: \dfrac{tanp + tanq}{1 - tanp \times tanq}  \\

\rm \: =  \: \dfrac{\dfrac{2ab}{ {a}^{2}  -  {c}^{2} } }{1 - \dfrac{ {b}^{2}  -  {c}^{2} }{ {a}^{2}  -  {c}^{2} } }  \\

\rm \: =  \: \dfrac{\dfrac{2ab}{ {a}^{2}  -  {c}^{2} } }{\dfrac{ {a}^{2}   -  {c}^{2} -  {b}^{2} +  {c}^{2} }{ {a}^{2}  -  {c}^{2} } }  \\

\rm \: =  \: \dfrac{2ab}{ {a}^{2}  -  {b}^{2} }  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \:tan(p + q) =  \: \dfrac{2ab}{ {a}^{2}  -  {b}^{2} } \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \:\rm \:  {sec}^{2}x -  {tan}^{2}x = 1 \: }} \\

{\rm :\longmapsto\: \alpha , \beta   \: are \: roots \: of \: a {x}^{2}  + b {x} +  c = 0, \: then}

\boxed{{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\

\boxed{{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\

\boxed{\sf{  \:\rm \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \:  \: }} \\

Similar questions