Math, asked by chatterjeec698, 8 months ago

If p and q are the roots of the equation ax²+bx+c = 0 then find the value of 1/(ap²+c)² + 1/(aq²+c)²​

Answers

Answered by SarcasticL0ve
9

GivEn:

  • p and q are the roots of the equation ax²+bx+c = 0

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Value of \sf \dfrac{1}{(ap^2 + c)^2} + \dfrac{1}{(aq^2 + c)^2}

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

⠀⠀⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Sum\:of\:roots\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\sf p + q = \dfrac{- b}{a}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Product\:of\:roots\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\sf pq = \dfrac{c}{a}

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

If p in the root of equation ax² + bx + c = 0 then,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf ap^2 + bp + c = 0

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf ap^2 + c = - bp

⠀⠀⠀⠀⠀⠀⠀

and

⠀⠀⠀⠀⠀⠀⠀

If q in the root of equation ax² + bx + c = 0 then,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf aq^2 + bq + c = 0

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf aq^2 + c = - bq

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

Value of \sf \dfrac{1}{(ap^2 + c)^2} + \dfrac{1}{(aq^2 + c)^2} is,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{( - bp)^2} + \dfrac{1}{( - bq)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{b^2} \bigg( \dfrac{1}{p^2} + \dfrac{1}{q^2} \bigg)

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{b^2} \bigg( \dfrac{p^2 + q^2}{(pq)^2} \bigg)

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{b^2} \bigg( \dfrac{(p + q)^2 - 2pq}{(pq)^2} \bigg)

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{b^2} \bigg( \dfrac{ \bigg( \frac{-b}{a} \bigg)^2 - 2 \bigg( \dfrac{c}{a} \bigg)}{ \bigg( \dfrac{c}{a} \bigg)^2} \bigg)

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{b^2 - 2ca}{(bc)^2}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\underline{\bf{\pink{Hence,\;Solved!!}}}}}

Answered by amirsalim95
0

Answer:

b^2 - 2ac/b^2c^2

Step-by-step explanation:

explanation is given in the pic attached

@amirsalim95

Attachments:
Similar questions