Math, asked by kshitijt603, 5 hours ago

If p and q are the roots of x2 – 7x – 6 = 0, find the value of p/q + q/p.
(it's x square).

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:p \: and \: q \: are \: roots \: of \:  {x}^{2} - 7x - 6 = 0

We know,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\:p + q =  - \dfrac{( - 7)}{1} = 7

Also,

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\:pq = \dfrac{ - 6}{1} =  - 6

Now, Consider

\rm :\longmapsto\:\dfrac{p}{q}  + \dfrac{q}{p}

\rm \:  =  \: \dfrac{ {p}^{2}  +  {q}^{2} }{pq}

\rm \:  =  \: \dfrac{ {p}^{2}  +  {q}^{2}  + 2pq - 2pq}{pq}

\rm \:  =  \: \dfrac{ {(p + q)}^{2}  - 2pq}{pq}

\rm \:  =  \: \dfrac{ {7}^{2} - 2( - 6)}{ - 6}

\rm \:  =  \: \dfrac{49 + 12}{ - 6}

\rm \:  =  \: \dfrac{61}{ - 6}

\rm \:  =  \:  -  \: \dfrac{61}{6}

Hence

\rm \implies\:\boxed{\tt{ \dfrac{p}{q}  + \dfrac{q}{p} =  \:  -  \:  \frac{61}{6} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions